
EIC Simulation Software

Whitney R. Armstrong

Argonne National Laboratory

March 9, 2017

EIC



1 Software Overview
EIC Software Needs
Argonne’s Software Effort

2 Detector Simulation and Analysis
Existing Frameworks
Our Software Plan

3 Recent ANL Progress
JLEIC Detector
SIEIC Detector

4 Future Work

5 Summary

March 9, 2017 0 / 37



EIC software is very important

Physics

Accelerator

Detectors

Physics
Event

Generator

Detector
Design

Full
Simulation

Physics
Performance

Software

Theory

R&D

Analysis

March 9, 2017 1 / 37



EIC Software Needs

Physics

Accelerator

Detectors

Physics
Event

Generator

Detector
Design

Full
Simulation

Physics
Performance

Software

Theory

R&D

Analysis

Two broad categories:

Event Generators

1 Physics input
2 MC event generators
3 Define the input for

simulation
4 HepSim nicely provides

targeted end point.

Detector Simulation and Analysis

1 Simulate detectors (Geant4)
2 Digitize simulation
3 Reconstruct primary

particles
4 Physics Analysis

March 9, 2017 2 / 37



ANL software effort

• What are we doing at ANL?

• Where are we going?

• How to work together?

March 9, 2017 3 / 37



ANL software effort

• What are we doing at ANL?

• Where are we going?

• How to work together?

March 9, 2017 3 / 37



ANL software effort

• What are we doing at ANL?

• Where are we going?

• How to work together?

March 9, 2017 3 / 37



ANL software effort

• What are we doing at ANL?

• Where are we going?

• How to work together?

March 9, 2017 3 / 37



Software for the future

We have recently identified the best path for future development.

Good software is
• Maintainable and long-lasting

• Robust and Flexible

• Usable and easily extended

• not reinventing the wheel!

• always improving

I have spent a significant amount of time looking into the various
HEP/NP software frameworks and tools.
It is important to reflect on what worked and what did not work.

March 9, 2017 4 / 37



Existing Frameworks

Framework flaws (opinion)

• eicROOT → tightly coupled, using many deprecated
features

• fun4all → monolithic, experiment specific, non-starter for us

• GEMC → monolithic, tightly coupled, reinvented wheel
(now wheels are square)

• slic + lcsim → unmaintainable, JAVA

• iLCSoft (pre-DD4hep) → tightly coupled

• iLCSoft (post-DD4hep) → flexible, currently unwinding
tightly coupled algorithms

Tightly coupled frameworks are bad!

March 9, 2017 5 / 37



Software Frameworks

Good software
• Maintainable

• Flexible and Generic algorithms

Main jobs of software

1 Simulate detectors (Geant4)

2 Digitize simulation

3 Reconstruct primary particles

4 Physics Analysis

March 9, 2017 6 / 37



Our Software Plan

Critical tools:

• Geant4

• ROOT

• DD4hep

• Marlin

• Collection of many marlin processors

• podio (future)

•

March 9, 2017 7 / 37



DD4hep
The solution to the geometry problem

Structure and packages

DD4hep

DDCore

DDG4

DDEveDDRec

DDAlign

DDCond

basics
geometryhandling
STABLE

Simulation interfacetoGeant4
STABLE

Geometryvisualization
EventDisplay
BASIC

Reconstruction interface
Seetalk byA.SaileronThu
DD4hepbasedevent reco

Conditionsand
Alignment support
UNDERDEVELOPMENT

MarkoPetrič(CERN) marko.petric@cern.ch DetectorSimulationswithDD4hep 3/14

3
14

March 9, 2017 8 / 37



DD4hep

Extensions
where
required

Detector
constructors

python

Compact
description

xml

Generic Detector
Description Model

Based on ROOT TGeo
c++

Detector
constructors

c++

Geometry
Display

TGeo => G4
converters

Reconstruction
Extensions

Analysis
Extensions

Reconstruction
Program

Analysis
Program

Geant4
Program

GDML
Converter

xml

Alignment /
Calibration

Conditions DB

• Provides single source of geometry

• Geometry can be flexibly parameterized

• Was designed with long term application and use with real
experiments

Only problem is convincing EIC/NP community → DD4NP?

March 9, 2017 9 / 37



Marlin

We
will use Marlin for organizing our post-simulation processing.

In contact with lead developers planning how to improve Marlin.

March 9, 2017 10 / 37



Marlin

• First step will be ddsim

• All final steps will be Marlin processors

• iLCSoft community is factorizing algorithms from existing
processors to make more generic code

Tasks
Data Model

EG

Simulation

Hits

Digitization

Signals

Clustering

Clusters

Track Finding

Track Segments

Track Fitting

Tracks

Vertex Fitter

Vertices

PID

Trajectories

etc.

Particles

March 9, 2017 11 / 37



Recent Progress
Using SLIC+lcsim

• Preliminary SiD study identifying silicon timing requirements (Repond)
• This should trigger the R&D efforts to begin in earnest.
• Full simulations of SiEIC and reconstruction on local nodes.
• Almost complete phased out slic for ddsim.

DD4hep and reconstruction

• SiEIC and JLEIC geometries nearly completed
• New GenFit based track fitting works well.
• Developing GenFind track finder for initializing.

March 9, 2017 12 / 37



JLEIC
Sereres Johnston

March 9, 2017 13 / 37



JLEIC
Reconstructed Tracks

March 9, 2017 14 / 37



JLEIC
Reconstructed Tracks

March 9, 2017 15 / 37



JLEIC
Reconstructed Tracks

March 9, 2017 16 / 37



Reconstructed Tracks

March 9, 2017 17 / 37



Reconstructed Tracks

March 9, 2017 18 / 37



SiEIC
SiD style detector

March 9, 2017 19 / 37



SiEIC
Reconstructed Tracks

March 9, 2017 20 / 37



SiEIC
Reconstructed Tracks

March 9, 2017 21 / 37



Reconstructed Tracks

March 9, 2017 22 / 37



Future Work

Near-Term
1 Finish GenFind and write generic processor: GenFind + GenFit

2 Continue to improve on JLEIC geometry

3 Setup first common detector benchmarks (compare JLEIC to
SiEIC)

4 Build software on jlab farm/CUE

Long-Term
1 Simulate eRHIC detector designs

2 Adopt data model

March 9, 2017 23 / 37



Summary

Collaborators Needed
1 We are using gitlab
2 Collaborators welcome
3 Public group soon...

Useful links
• https:

//gitlab.com/Argonne_EIC

A lot of progress on simulation software and we look forward to collaborating
with JLEIC and the broader EIC community.

March 9, 2017 24 / 37

https://gitlab.com/Argonne_EIC
https://gitlab.com/Argonne_EIC


Backup Slides

March 9, 2017 24 / 37



Common Data Model

EIC

from A. Zaborowska

1 A standardized data model is a great idea

2 Unfortunately not picked up by ESC → problem will only get
worse with time

March 9, 2017 25 / 37



Goal 1
Is worth adopting a data model?

Yes!

Motivation

Development of unified geometry, detector, tracking, and reconstruction tools
for an EIC.

• The data model exists at the boundaries of each software task.

Tasks
Data Model

EG

Simulation

Hits

Digitization

Signals

Clustering

Clusters

Track Finding

Track Segments

Track Fitting

Tracks

Vertex Fitter

Vertices

PID

Trajectories

etc.

Particles

Example: I want to make an Event Display

• The Data Model are the red boxes
• I know exactly which kind of hit/cluster/tracks and how to read them
• Now I can just worry about the actual challenge of building an elegant and

useful event display.

This principle holds for all tasks manipulating (input and output) data model
objects.

March 9, 2017 26 / 37



Goal 1
Is worth adopting a data model?

Yes!

Motivation

Development of unified geometry, detector, tracking, and reconstruction tools
for an EIC.

• The data model exists at the boundaries of each software task.

Tasks
Data Model

EG

Simulation

Hits

Digitization

Signals

Clustering

Clusters

Track Finding

Track Segments

Track Fitting

Tracks

Vertex Fitter

Vertices

PID

Trajectories

etc.

Particles

Example: I want to make an Event Display

• The Data Model are the red boxes
• I know exactly which kind of hit/cluster/tracks and how to read them
• Now I can just worry about the actual challenge of building an elegant and

useful event display.

This principle holds for all tasks manipulating (input and output) data model
objects.

March 9, 2017 26 / 37



Hopefully I have convinced you that a standardized data model is a
good idea.

OK, but what tool?

March 9, 2017 27 / 37



Goal 2
What data model should we use?

What are the requirements for a good data model?

• Should be relatively static (ie, we don’t want to create a new
”Hit” class for every new detector/algorithm).

• ROOT compatible
• Maximum compatiblity with existing libraries (frameworks?)
• What else?

Examples of data models from other projects

• LCIO (old)
• PLCIO
• lhcbio
• fcc-edm

What about the actual data serialization IO (file) format?

March 9, 2017 28 / 37



Data Persistence for the near future
serialization layer

persistency tools

persistent data model

SIO

AID

LCIO

ROOT

PODIO

PLCIO fcc-edm lhcbio

March 9, 2017 29 / 37



Data Persistence for the near future
serialization layer

persistency tools

persistent data model

SIO

AID

LCIO

ROOT SIO

PODIO

PLCIO

protocol-buffers

fcc-edm lhcbio

March 9, 2017 30 / 37



Goal 3: Adopting the EDM

March 9, 2017 31 / 37



Conclusion

• Can we do it?

• This decision has direct impact on how the
tracking/geometry/detector objectives will proceed.

Some useful links
• https://github.com/hegner/podio

• https://stash.desy.de/projects/IL/repos/plcio/browse

• https://github.com/iLCSoft

• https://github.com/HEP-FCC

• http://ilcsoft.desy.de/v01-17-09/DD4hep/v00-15/doc/

html/index.html

March 9, 2017 32 / 37

https://github.com/hegner/podio
https://stash.desy.de/projects/IL/repos/plcio/browse
https://github.com/iLCSoft
https://github.com/HEP-FCC
http://ilcsoft.desy.de/v01-17-09/DD4hep/v00-15/doc/html/index.html
http://ilcsoft.desy.de/v01-17-09/DD4hep/v00-15/doc/html/index.html


Introduction to the data persistency problem

What is persistent data?

Persistent data denotes information that is infrequently accessed and
not likely to be modified.
The opposite of this is transactional data.

– google

What is a persistent data structure?

Persistent data structure is a data structure that always preserves
the previous version of itself when it is modified

– wikipedia

What is data serialization?

Serialization is the process of translating data structures or object
state into a format that can be stored (for example, in a file or memory
buffer, or transmitted across a network connection link) and
reconstructed later in the same or another computer environment

– google

March 9, 2017 33 / 37



Introduction to the data persistency problem

What is persistent data?

Persistent data denotes information that is infrequently accessed and
not likely to be modified.
The opposite of this is transactional data.

– google

What is a persistent data structure?

Persistent data structure is a data structure that always preserves
the previous version of itself when it is modified

– wikipedia

What is data serialization?

Serialization is the process of translating data structures or object
state into a format that can be stored (for example, in a file or memory
buffer, or transmitted across a network connection link) and
reconstructed later in the same or another computer environment

– google

March 9, 2017 33 / 37



Introduction to the data persistency problem

What is persistent data?

Persistent data denotes information that is infrequently accessed and
not likely to be modified.
The opposite of this is transactional data.

– google

What is a persistent data structure?

Persistent data structure is a data structure that always preserves
the previous version of itself when it is modified

– wikipedia

What is data serialization?

Serialization is the process of translating data structures or object
state into a format that can be stored (for example, in a file or memory
buffer, or transmitted across a network connection link) and
reconstructed later in the same or another computer environment

– google
March 9, 2017 33 / 37



Quick note on context

Here persistent data means the data that is used between each step of
simulation/tracking/reconstruction. Thus it facilitates the development
of simple or complex single purpose libraries.

There is a larger type of data persistence, of the data archiving type,
which we are not talking about there.

We want a quasi-persistent data model, which from the view of the
entire software chain, seems to be used in a transient way.

March 9, 2017 34 / 37



Let’s look at some HEP projects

• SIO (1999) - serial IO library

• AID (1999-2003?) - tool that generates code based on data model

• LCIO (2003) - A fixed but flexible persistent data model. Uses AID

to define data structures and SIO for serialization.

LCIO is still in heavy use. Why has it successfully lasted this long?

• Is it really fast? ... Not really

• Does it have the best compression? ... No

• Are the data structures optimized for speed? ... No

• Has it been modernized with changing/improving language
features? ... No

• Has it been well maintained? ... Yes.

• Was it adopted by the community? ... Yes.

• Was it accessible with a variety of languages? ... Yes.

March 9, 2017 35 / 37



Let’s look at some HEP projects

• SIO (1999) - serial IO library

• AID (1999-2003?) - tool that generates code based on data model

• LCIO (2003) - A fixed but flexible persistent data model. Uses AID

to define data structures and SIO for serialization.

LCIO is still in heavy use. Why has it successfully lasted this long?

• Is it really fast? ... Not really

• Does it have the best compression? ... No

• Are the data structures optimized for speed? ... No

• Has it been modernized with changing/improving language
features? ... No

• Has it been well maintained? ... Yes.

• Was it adopted by the community? ... Yes.

• Was it accessible with a variety of languages? ... Yes.

March 9, 2017 35 / 37



Let’s look at some HEP projects

• SIO (1999) - serial IO library

• AID (1999-2003?) - tool that generates code based on data model

• LCIO (2003) - A fixed but flexible persistent data model. Uses AID

to define data structures and SIO for serialization.

LCIO is still in heavy use. Why has it successfully lasted this long?

• Is it really fast? ... Not really

• Does it have the best compression? ... No

• Are the data structures optimized for speed? ... No

• Has it been modernized with changing/improving language
features? ... No

• Has it been well maintained? ... Yes.

• Was it adopted by the community? ... Yes.

• Was it accessible with a variety of languages? ... Yes.

March 9, 2017 35 / 37



Looking at LCIO’s Success

• LCIO was successful because it was flexible, maintained, and
adopted by the developer community (not the users).

• User community overwhelmingly adopted ROOT for everything
(but no persistent data model).

• ROOT and LCIO do not work together!

• ROOT is clearly the tool of choice and will remain so.

We new library for the future!

It needs to

• Use ROOT IO for serialization layer.

• Develop tools for creating persistent data, making maximal use
ROOT tools as well.

• Read and write LCIO files to provide backward compatibility so
we can use all the tools developed over the past 15 years.

March 9, 2017 36 / 37



Looking at LCIO’s Success

• LCIO was successful because it was flexible, maintained, and
adopted by the developer community (not the users).

• User community overwhelmingly adopted ROOT for everything
(but no persistent data model).

• ROOT and LCIO do not work together!

• ROOT is clearly the tool of choice and will remain so.

We new library for the future!

It needs to

• Use ROOT IO for serialization layer.

• Develop tools for creating persistent data, making maximal use
ROOT tools as well.

• Read and write LCIO files to provide backward compatibility so
we can use all the tools developed over the past 15 years.

March 9, 2017 36 / 37



This is the most immediate software problem

We need to solve this problem ASAP!

• Use ROOT IO for serialization layer.

• Develop tools for creating persistent data, making maximal use
ROOT tools as well.

• Read and write LCIO files to provide backward compatibility so
we can use all the tools developed over the past 15 years.

Fortunately, the FCC community is already working on it:
• PODIO - Plain-old-data IO (analog of AID) but uses ROOT and

treats python as first class language.
• PLCIO - LCIO data model implementation with PODIO

Both of these projects are at an early stage but can be easily
completed with more support from the community.

The real challenge...

Getting library/toolkit/framework developers to agree to
using the same event data model.

March 9, 2017 37 / 37



This is the most immediate software problem

We need to solve this problem ASAP!

• Use ROOT IO for serialization layer.

• Develop tools for creating persistent data, making maximal use
ROOT tools as well.

• Read and write LCIO files to provide backward compatibility so
we can use all the tools developed over the past 15 years.

Fortunately, the FCC community is already working on it:
• PODIO - Plain-old-data IO (analog of AID) but uses ROOT and

treats python as first class language.
• PLCIO - LCIO data model implementation with PODIO

Both of these projects are at an early stage but can be easily
completed with more support from the community.

The real challenge...

Getting library/toolkit/framework developers to agree to
using the same event data model.

March 9, 2017 37 / 37



This is the most immediate software problem

We need to solve this problem ASAP!

• Use ROOT IO for serialization layer.

• Develop tools for creating persistent data, making maximal use
ROOT tools as well.

• Read and write LCIO files to provide backward compatibility so
we can use all the tools developed over the past 15 years.

Fortunately, the FCC community is already working on it:
• PODIO - Plain-old-data IO (analog of AID) but uses ROOT and

treats python as first class language.
• PLCIO - LCIO data model implementation with PODIO

Both of these projects are at an early stage but can be easily
completed with more support from the community.

The real challenge...

Getting library/toolkit/framework developers to agree to
using the same event data model.

March 9, 2017 37 / 37


	Software Overview
	EIC Software Needs
	Argonne's Software Effort

	Detector Simulation and Analysis
	Existing Frameworks
	Our Software Plan

	Recent ANL Progress
	JLEIC Detector
	SIEIC Detector

	Future Work
	Summary

