
Persistent Data

A History of (some) HEP software

Whitney R. Armstrong

Argonne National Laboratory

October 4, 2016



1 Introduction to the data persistence problem

October 4, 2016 0 / 8



Introduction to the data persistency problem

What is persistent data?

Persistent data denotes information that is infrequently accessed and
not likely to be modified.
The opposite of this is transactional data.

– google

What is a persistent data structure?

Persistent data structure is a data structure that always preserves
the previous version of itself when it is modified

– wikipedia

What is data serialization?

Serialization is the process of translating data structures or object
state into a format that can be stored (for example, in a file or memory
buffer, or transmitted across a network connection link) and
reconstructed later in the same or another computer environment

– google

October 4, 2016 1 / 8



Introduction to the data persistency problem

What is persistent data?

Persistent data denotes information that is infrequently accessed and
not likely to be modified.
The opposite of this is transactional data.

– google

What is a persistent data structure?

Persistent data structure is a data structure that always preserves
the previous version of itself when it is modified

– wikipedia

What is data serialization?

Serialization is the process of translating data structures or object
state into a format that can be stored (for example, in a file or memory
buffer, or transmitted across a network connection link) and
reconstructed later in the same or another computer environment

– google

October 4, 2016 1 / 8



Introduction to the data persistency problem

What is persistent data?

Persistent data denotes information that is infrequently accessed and
not likely to be modified.
The opposite of this is transactional data.

– google

What is a persistent data structure?

Persistent data structure is a data structure that always preserves
the previous version of itself when it is modified

– wikipedia

What is data serialization?

Serialization is the process of translating data structures or object
state into a format that can be stored (for example, in a file or memory
buffer, or transmitted across a network connection link) and
reconstructed later in the same or another computer environment

– google
October 4, 2016 1 / 8



Quick note on context

Here persistent data means the data that is used between each step of
simulation/tracking/reconstruction. Thus it facilitates the development
of simple or complex single purpose libraries.

There is a larger type of data persistence, of the data archiving type,
which we are not talking about there.

We want a quasi-persistent data model, which from the view of the
entire software chain, seems to be used in a transient way.

October 4, 2016 2 / 8



Let’s look at some HEP projects

• SIO (1999) - serial IO library

• AID (1999-2003?) - tool that generates code based on data model

• LCIO (2003) - A fixed but flexible persistent data model. Uses AID

to define data structures and SIO for serialization.

LCIO is still in heavy use. Why has it successfully lasted this long?

• Is it really fast? ... Not really

• Does it have the best compression? ... No

• Are the data structures optimized for speed? ... No

• Has it been modernized with changing/improving language
features? ... No

• Has it been well maintained? ... Yes.

• Was it adopted by the community? ... Yes.

• Was it accessible with a variety of languages? ... Yes.

October 4, 2016 3 / 8



Let’s look at some HEP projects

• SIO (1999) - serial IO library

• AID (1999-2003?) - tool that generates code based on data model

• LCIO (2003) - A fixed but flexible persistent data model. Uses AID

to define data structures and SIO for serialization.

LCIO is still in heavy use. Why has it successfully lasted this long?

• Is it really fast? ... Not really

• Does it have the best compression? ... No

• Are the data structures optimized for speed? ... No

• Has it been modernized with changing/improving language
features? ... No

• Has it been well maintained? ... Yes.

• Was it adopted by the community? ... Yes.

• Was it accessible with a variety of languages? ... Yes.

October 4, 2016 3 / 8



Let’s look at some HEP projects

• SIO (1999) - serial IO library

• AID (1999-2003?) - tool that generates code based on data model

• LCIO (2003) - A fixed but flexible persistent data model. Uses AID

to define data structures and SIO for serialization.

LCIO is still in heavy use. Why has it successfully lasted this long?

• Is it really fast? ... Not really

• Does it have the best compression? ... No

• Are the data structures optimized for speed? ... No

• Has it been modernized with changing/improving language
features? ... No

• Has it been well maintained? ... Yes.

• Was it adopted by the community? ... Yes.

• Was it accessible with a variety of languages? ... Yes.

October 4, 2016 3 / 8



Looking at LCIO’s Success

• LCIO was successful because it was flexible, maintained, and
adopted by the developer community (not the users).

• User community overwhelmingly adopted ROOT for everything
(but no persistent data model).

• ROOT and LCIO do not work together!

• ROOT is clearly the tool of choice and will remain so.

We new library for the future!

It needs to

• Use ROOT IO for serialization layer.

• Develop tools for creating persistent data, making maximal use
ROOT tools as well.

• Read and write LCIO files to provide backward compatibility so
we can use all the tools developed over the past 15 years.

October 4, 2016 4 / 8



Looking at LCIO’s Success

• LCIO was successful because it was flexible, maintained, and
adopted by the developer community (not the users).

• User community overwhelmingly adopted ROOT for everything
(but no persistent data model).

• ROOT and LCIO do not work together!

• ROOT is clearly the tool of choice and will remain so.

We new library for the future!

It needs to

• Use ROOT IO for serialization layer.

• Develop tools for creating persistent data, making maximal use
ROOT tools as well.

• Read and write LCIO files to provide backward compatibility so
we can use all the tools developed over the past 15 years.

October 4, 2016 4 / 8



This is the most immediate software problem

We need to solve this problem ASAP!

• Use ROOT IO for serialization layer.

• Develop tools for creating persistent data, making maximal use
ROOT tools as well.

• Read and write LCIO files to provide backward compatibility so
we can use all the tools developed over the past 15 years.

Fortunately, the FCC community is already working on it:
• PODIO - Plain-old-data IO (analog of AID) but uses ROOT and

treats python as first class language.
• PLCIO - LCIO data model implementation with PODIO

Both of these projects are at an early stage but can be easily
completed with more support from the community.

The real challenge...

Getting library/toolkit/framework developers to agree to
using the same event data model.

October 4, 2016 5 / 8



This is the most immediate software problem

We need to solve this problem ASAP!

• Use ROOT IO for serialization layer.

• Develop tools for creating persistent data, making maximal use
ROOT tools as well.

• Read and write LCIO files to provide backward compatibility so
we can use all the tools developed over the past 15 years.

Fortunately, the FCC community is already working on it:
• PODIO - Plain-old-data IO (analog of AID) but uses ROOT and

treats python as first class language.
• PLCIO - LCIO data model implementation with PODIO

Both of these projects are at an early stage but can be easily
completed with more support from the community.

The real challenge...

Getting library/toolkit/framework developers to agree to
using the same event data model.

October 4, 2016 5 / 8



This is the most immediate software problem

We need to solve this problem ASAP!

• Use ROOT IO for serialization layer.

• Develop tools for creating persistent data, making maximal use
ROOT tools as well.

• Read and write LCIO files to provide backward compatibility so
we can use all the tools developed over the past 15 years.

Fortunately, the FCC community is already working on it:
• PODIO - Plain-old-data IO (analog of AID) but uses ROOT and

treats python as first class language.
• PLCIO - LCIO data model implementation with PODIO

Both of these projects are at an early stage but can be easily
completed with more support from the community.

The real challenge...

Getting library/toolkit/framework developers to agree to
using the same event data model.

October 4, 2016 5 / 8



Data Persistence for the near future
serialization layer

persistency tools

persistent data model

SIO

AID

LCIO

ROOT

PODIO

PLCIO

October 4, 2016 6 / 8



Data Persistence for the near future
serialization layer

persistency tools

persistent data model

SIO

AID

LCIO

ROOT SIO

PODIO

PLCIO

October 4, 2016 7 / 8



Conclusion

• Can we do it?

• This decision has direct impact on how the
tracking/geometry/detector objectives will proceed.

Some useful links
• https://github.com/hegner/podio

• https://stash.desy.de/projects/IL/repos/plcio/browse

• https://github.com/iLCSoft

• https://github.com/HEP-FCC

• http://ilcsoft.desy.de/v01-17-09/DD4hep/v00-15/doc/

html/index.html

October 4, 2016 8 / 8

https://github.com/hegner/podio
https://stash.desy.de/projects/IL/repos/plcio/browse
https://github.com/iLCSoft
https://github.com/HEP-FCC
http://ilcsoft.desy.de/v01-17-09/DD4hep/v00-15/doc/html/index.html
http://ilcsoft.desy.de/v01-17-09/DD4hep/v00-15/doc/html/index.html

	Introduction to the data persistence problem

