//========================================================================== // AIDA Detector description implementation //-------------------------------------------------------------------------- // Copyright (C) Organisation europeenne pour la Recherche nucleaire (CERN) // All rights reserved. // // For the licensing terms see $DD4hepINSTALL/LICENSE. // For the list of contributors see $DD4hepINSTALL/doc/CREDITS. // // Author : M.Frank // //========================================================================== // // Specialized generic detector constructor // //========================================================================== // // Implementation of the Sci Fiber geometry: M. Żurek 07/19/2021 #include "DD4hep/DetFactoryHelper.h" #include "XML/Layering.h" #include "Math/Point2D.h" #include "TGeoPolygon.h" #include "TMath.h" using namespace std; using namespace dd4hep; using namespace dd4hep::detail; typedef ROOT::Math::XYPoint Point; // Fill fiber lattice into trapezoid starting from position (0,0) in x-z coordinate system vector<vector<Point>> fiberPositions(double radius, double x_spacing, double z_spacing, double x, double z, double phi, double spacing_tol = 1e-2) { // z_spacing - distance between fiber layers in z // x_spacing - distance between fiber centers in x // x - half-length of the shorter (bottom) base of the trapezoid // z - height of the trapezoid // phi - angle between z and trapezoid arm vector<vector<Point>> positions; int z_layers = floor((z/2-radius-spacing_tol)/z_spacing); // number of layers that fit in z/2 double z_pos = 0.; double x_pos = 0.; for(int l = -z_layers; l < z_layers+1; l++) { vector<Point> xline; z_pos = l*z_spacing; double x_max = x + (z/2. + z_pos)*tan(phi) - spacing_tol; // calculate max x at particular z_pos (l % 2 == 0) ? x_pos = 0. : x_pos = x_spacing/2; // account for spacing/2 shift while(x_pos < (x_max - radius)) { xline.push_back(Point(x_pos, z_pos)); if(x_pos != 0.) xline.push_back(Point(-x_pos, z_pos)); // using symmetry around x=0 x_pos += x_spacing; } // Sort fiber IDs for a better organization sort(xline.begin(), xline.end(), [](const Point &p1, const Point &p2) { return p1.x() < p2.x(); }); positions.emplace_back(std::move(xline)); } return positions; } // Calculate number of divisions for the readout grid for the fiber layers std::pair<int, int> getNdivisions(double x, double z, double dx, double dz) { // x and z defined as in vector<Point> fiberPositions // dx, dz - size of the grid in x and z we want to get close to with the polygons // See also descripltion when the function is called double SiPMsize = 13.0*mm; double grid_min = SiPMsize + 3.0*mm; if(dz < grid_min) { dz = grid_min; } if(dx < grid_min) { dx = grid_min; } int nfit_cells_z = floor(z/dz); int n_cells_z = nfit_cells_z; if(nfit_cells_z == 0) n_cells_z++; int nfit_cells_x = floor((2*x)/dx); int n_cells_x = nfit_cells_x; if(nfit_cells_x == 0) n_cells_x++; return std::make_pair(n_cells_x, n_cells_z); } // Calculate dimensions of the polygonal grid in the cartesian coordinate system x-z vector< tuple<int, Point, Point, Point, Point> > gridPoints(int div_x, int div_z, double x, double z, double phi) { // x, z and phi defined as in vector<Point> fiberPositions // div_x, div_z - number of divisions in x and z double dz = z/div_z; std::vector<std::tuple<int, Point, Point, Point, Point>> points; for(int iz = 0; iz < div_z + 1; iz++){ for(int ix = 0; ix < div_x + 1; ix++){ double A_z = -z/2 + iz*dz; double B_z = -z/2 + (iz+1)*dz; double len_x_for_z = 2*(x+iz*dz*tan(phi)); double len_x_for_z_plus_1 = 2*(x + (iz+1)*dz*tan(phi)); double dx_for_z = len_x_for_z/div_x; double dx_for_z_plus_1 = len_x_for_z_plus_1/div_x; double A_x = -len_x_for_z/2. + ix*dx_for_z; double B_x = -len_x_for_z_plus_1/2. + ix*dx_for_z_plus_1; double C_z = B_z; double D_z = A_z; double C_x = B_x + dx_for_z_plus_1; double D_x = A_x + dx_for_z; int id = ix + div_x * iz; auto A = Point(A_x, A_z); auto B = Point(B_x, B_z); auto C = Point(C_x, C_z); auto D = Point(D_x, D_z); // vertex points filled in the clock-wise direction points.push_back(make_tuple(id, A, B, C, D)); } } return points; } // Create detector static Ref_t create_detector(Detector& description, xml_h e, SensitiveDetector sens) { static double tolerance = 0e0; Layering layering (e); xml_det_t x_det = e; Material air = description.air(); int det_id = x_det.id(); string det_name = x_det.nameStr(); xml_comp_t x_staves = x_det.staves(); xml_comp_t x_dim = x_det.dimensions(); int nsides = x_dim.numsides(); double inner_r = x_dim.rmin(); double dphi = (2*M_PI/nsides); double hphi = dphi/2; double support_thickness = 0.0; if(x_staves.hasChild("support")){ support_thickness = getAttrOrDefault(x_staves.child(_U(support)), _U(thickness), 5.0 * cm); } double mod_z = layering.totalThickness() + support_thickness; double outer_r = inner_r + mod_z; double totThick = mod_z; double offset = x_det.attr<double>(_Unicode(offset)); DetElement sdet (det_name,det_id); Volume motherVol = description.pickMotherVolume(sdet); PolyhedraRegular hedra (nsides,inner_r,inner_r+totThick+tolerance*2e0,x_dim.z()); Volume envelope (det_name,hedra,air); PlacedVolume env_phv = motherVol.placeVolume(envelope,Transform3D(Translation3D(0,0,offset)*RotationZ(M_PI/nsides))); env_phv.addPhysVolID("system",det_id); sdet.setPlacement(env_phv); DetElement stave_det("stave0",det_id); double dx = 0.0; //mod_z / std::sin(dphi); // dx per layer // Compute the top and bottom face measurements. double trd_x2 = (2 * std::tan(hphi) * outer_r - dx)/2 - tolerance; double trd_x1 = (2 * std::tan(hphi) * inner_r + dx)/2 - tolerance; double trd_y1 = x_dim.z()/2 - tolerance; double trd_y2 = trd_y1; double trd_z = mod_z/2 - tolerance; // Create the trapezoid for the stave. Trapezoid trd(trd_x1, // Outer side, i.e. the "long" X side. trd_x2, // Inner side, i.e. the "short" X side. trd_y1, // Corresponds to subdetector (or module) Z. trd_y2, // trd_z); // Thickness, in Y for top stave, when rotated. Volume mod_vol("stave",trd,air); double l_pos_z = -(layering.totalThickness() / 2) - support_thickness/2.0; //double trd_x2_support = trd_x1; double trd_x1_support = (2 * std::tan(hphi) * outer_r - dx- support_thickness)/2 - tolerance; Solid support_frame_s; // optional stave support if(x_staves.hasChild("support")){ xml_comp_t x_support = x_staves.child(_U(support)); // is the support on the inside surface? bool is_inside_support = getAttrOrDefault<bool>(x_support, _Unicode(inside), true); // number of "beams" running the length of the stave. int n_beams = getAttrOrDefault<int>(x_support, _Unicode(n_beams), 3); double beam_thickness = support_thickness / 4.0; // maybe a parameter later... trd_x1_support = (2 * std::tan(hphi) * (outer_r - support_thickness + beam_thickness)) / 2 - tolerance; double grid_size = getAttrOrDefault(x_support, _Unicode(grid_size), 25.0 * cm); double beam_width = 2.0 * trd_x1_support / (n_beams + 1); // quick hack to make some gap between T beams double cross_beam_thickness = support_thickness/4.0; //double trd_x1_support = (2 * std::tan(hphi) * (inner_r + beam_thickness)) / 2 - tolerance; double trd_x2_support = trd_x2; int n_cross_supports = std::floor((trd_y1-cross_beam_thickness)/grid_size); Box beam_vert_s(beam_thickness / 2.0 - tolerance, trd_y1, support_thickness / 2.0 - tolerance); Box beam_hori_s(beam_width / 2.0 - tolerance, trd_y1, beam_thickness / 2.0 - tolerance); UnionSolid T_beam_s(beam_vert_s, beam_hori_s, Position(0, 0, -support_thickness / 2.0 + beam_thickness / 2.0)); // cross supports Trapezoid trd_support(trd_x1_support,trd_x2_support, beam_thickness / 2.0 - tolerance, beam_thickness / 2.0 - tolerance, support_thickness / 2.0 - tolerance - cross_beam_thickness/2.0); UnionSolid support_array_start_s(T_beam_s,trd_support,Position(0,0,cross_beam_thickness/2.0)); for (int isup = 0; isup < n_cross_supports; isup++) { support_array_start_s = UnionSolid(support_array_start_s, trd_support, Position(0, -1.0 * isup * grid_size, cross_beam_thickness/2.0)); support_array_start_s = UnionSolid(support_array_start_s, trd_support, Position(0, 1.0 * isup * grid_size, cross_beam_thickness/2.0)); } support_array_start_s = UnionSolid(support_array_start_s, beam_hori_s, Position(-1.8 * 0.5*(trd_x1+trd_x2_support) / n_beams, 0, -support_thickness / 2.0 + beam_thickness / 2.0)); support_array_start_s = UnionSolid(support_array_start_s, beam_hori_s, Position(1.8 * 0.5*(trd_x1+trd_x2_support) / n_beams, 0, -support_thickness / 2.0 + beam_thickness / 2.0)); support_array_start_s = UnionSolid(support_array_start_s, beam_vert_s, Position(-1.8 * 0.5*(trd_x1+trd_x2_support) / n_beams, 0, 0)); support_array_start_s = UnionSolid(support_array_start_s, beam_vert_s, Position(1.8 * 0.5*(trd_x1+trd_x2_support) / n_beams, 0, 0)); support_frame_s = support_array_start_s; Material support_mat = description.material(x_support.materialStr()); Volume support_vol("support_frame_v", support_frame_s, support_mat); support_vol.setVisAttributes(description,x_support.visStr()); // figure out how to best place //auto pv = mod_vol.placeVolume(support_vol, Position(0.0, 0.0, l_pos_z + support_thickness / 2.0)); auto pv = mod_vol.placeVolume(support_vol, Position(0.0, 0.0, -l_pos_z - support_thickness / 2.0)); } //l_pos_z += support_thickness; sens.setType("calorimeter"); { // ===== buildBarrelStave(description, sens, module_volume) ===== // Parameters for computing the layer X dimension: double stave_z = trd_y1; double tan_hphi = std::tan(hphi); double l_dim_x = trd_x1; // Starting X dimension for the layer. // Loop over the sets of layer elements in the detector. int l_num = 1; for(xml_coll_t li(x_det,_U(layer)); li; ++li) { xml_comp_t x_layer = li; int repeat = x_layer.repeat(); // Loop over number of repeats for this layer. for (int j=0; j<repeat; j++) { string l_name = _toString(l_num,"layer%d"); double l_thickness = layering.layer(l_num-1)->thickness(); // Layer's thickness. Position l_pos(0,0,l_pos_z+l_thickness/2); // Position of the layer. double l_trd_x1 = l_dim_x - tolerance; double l_trd_x2 = l_dim_x + l_thickness*tan_hphi - tolerance; double l_trd_y1 = stave_z-tolerance; double l_trd_y2 = l_trd_y1; double l_trd_z = l_thickness/2-tolerance; Trapezoid l_trd(l_trd_x1,l_trd_x2,l_trd_y1,l_trd_y2,l_trd_z); Volume l_vol(l_name,l_trd,air); DetElement layer(stave_det, l_name, det_id); // Loop over the sublayers or slices for this layer. int s_num = 1; double s_pos_z = -(l_thickness / 2); for(xml_coll_t si(x_layer,_U(slice)); si; ++si) { xml_comp_t x_slice = si; string s_name = _toString(s_num,"slice%d"); double s_thick = x_slice.thickness(); Volume s_vol(s_name); DetElement slice(layer,s_name,det_id); double s_trd_x1 = l_dim_x + (s_pos_z+l_thickness/2)*tan_hphi - tolerance; double s_trd_x2 = l_dim_x + (s_pos_z+l_thickness/2+s_thick)*tan_hphi - tolerance; double s_trd_y1 = stave_z-tolerance; double s_trd_y2 = s_trd_y1; double s_trd_z = s_thick/2-tolerance; Trapezoid s_trd(s_trd_x1, s_trd_x2, s_trd_y1, s_trd_y2, s_trd_z); s_vol.setSolid(s_trd); s_vol.setMaterial(description.material(x_slice.materialStr())); if (x_slice.hasChild("fiber")) { xml_comp_t x_fiber = x_slice.child(_Unicode(fiber)); double f_radius = getAttrOrDefault(x_fiber, _U(radius), 0.1 * cm); double f_spacing_x = getAttrOrDefault(x_fiber, _Unicode(spacing_x), 0.122 * cm); double f_spacing_z = getAttrOrDefault(x_fiber, _Unicode(spacing_z), 0.134 * cm); std::string f_id_grid = getAttrOrDefault(x_fiber, _Unicode(identifier_grid), "grid"); std::string f_id_fiber = getAttrOrDefault(x_fiber, _Unicode(identifier_fiber), "fiber"); // Calculate fiber positions inside the slice Tube f_tube(0, f_radius, stave_z-tolerance); // Set up the readout grid for the fiber layers // Trapezoid is divided into segments with equal dz and equal number of divisions in x // Every segment is a polygon that can be attached later to the lightguide // The grid size is assumed to be ~2x2 cm (starting values). This is to be larger than // SiPM chip (for GlueX 13mmx13mm: 4x4 grid 3mmx3mm with 3600 50×50 μm pixels each) // See, e.g., https://arxiv.org/abs/1801.03088 Fig. 2d // Calculate number of divisions pair<int, int> grid_div = getNdivisions(s_trd_x1, s_thick-tolerance, 2.0*cm, 2.0*cm); // Calculate polygonal grid coordinates (vertices) vector<tuple<int, Point, Point, Point, Point>> grid_vtx = gridPoints(grid_div.first, grid_div.second, s_trd_x1, s_thick-tolerance, hphi); vector<int> f_id_count(grid_div.first*grid_div.second,0); auto f_pos = fiberPositions(f_radius, f_spacing_x, f_spacing_z, s_trd_x1, s_thick-tolerance, hphi); for (auto &line : f_pos) { for (auto &p : line) { int f_grid_id = -1; int f_id = -1; // Check to which grid fiber belongs to for (auto &poly_vtx : grid_vtx) { auto [grid_id, vtx_a, vtx_b, vtx_c, vtx_d] = poly_vtx; double poly_x[4] = {vtx_a.x(), vtx_b.x(), vtx_c.x(), vtx_d.x()}; double poly_y[4] = {vtx_a.y(), vtx_b.y(), vtx_c.y(), vtx_d.y()}; double f_xy[2] = {p.x(), p.y()}; TGeoPolygon poly(4); poly.SetXY(poly_x,poly_y); poly.FinishPolygon(); if(poly.Contains(f_xy)) { f_grid_id = grid_id; f_id = f_id_count[grid_id]; f_id_count[grid_id]++; } } string f_name = "fiber" + to_string(f_grid_id) + "_" + to_string(f_id); Volume f_vol(f_name, f_tube, description.material(x_fiber.materialStr())); DetElement fiber(slice, f_name, det_id); if ( x_fiber.isSensitive() ) { f_vol.setSensitiveDetector(sens); } fiber.setAttributes(description,f_vol,x_fiber.regionStr(),x_fiber.limitsStr(),x_fiber.visStr()); // Fiber placement Transform3D f_tr(RotationZYX(0,0,M_PI*0.5),Position(p.x(), 0 ,p.y())); PlacedVolume fiber_phv = s_vol.placeVolume(f_vol, f_tr); fiber_phv.addPhysVolID(f_id_grid, f_grid_id + 1).addPhysVolID(f_id_fiber, f_id + 1); fiber.setPlacement(fiber_phv); } } } if ( x_slice.isSensitive() ) { s_vol.setSensitiveDetector(sens); } slice.setAttributes(description,s_vol,x_slice.regionStr(),x_slice.limitsStr(),x_slice.visStr()); // Slice placement. PlacedVolume slice_phv = l_vol.placeVolume(s_vol,Position(0,0,s_pos_z+s_thick/2)); slice_phv.addPhysVolID("slice", s_num); slice.setPlacement(slice_phv); // Increment Z position of slice. s_pos_z += s_thick; // Increment slice number. ++s_num; } // Set region, limitset, and vis of layer. layer.setAttributes(description,l_vol,x_layer.regionStr(),x_layer.limitsStr(),x_layer.visStr()); PlacedVolume layer_phv = mod_vol.placeVolume(l_vol,l_pos); layer_phv.addPhysVolID("layer", l_num); layer.setPlacement(layer_phv); // Increment to next layer Z position. double xcut = l_thickness * tan_hphi; l_dim_x += xcut; l_pos_z += l_thickness; ++l_num; } } } // Set stave visualization. if ( x_staves ) { mod_vol.setVisAttributes(description.visAttributes(x_staves.visStr())); } // Phi start for a stave. double phi = M_PI / nsides; double mod_x_off = dx / 2; // Stave X offset, derived from the dx. double mod_y_off = inner_r + mod_z/2; // Stave Y offset // Create nsides staves. for (int i = 0; i < nsides; i++, phi -= dphi) { // i is module number // Compute the stave position double m_pos_x = mod_x_off * std::cos(phi) - mod_y_off * std::sin(phi); double m_pos_y = mod_x_off * std::sin(phi) + mod_y_off * std::cos(phi); Transform3D tr(RotationZYX(0,phi,M_PI*0.5),Translation3D(-m_pos_x,-m_pos_y,0)); PlacedVolume pv = envelope.placeVolume(mod_vol,tr); pv.addPhysVolID("system",det_id); pv.addPhysVolID("module",i+1); DetElement sd = i==0 ? stave_det : stave_det.clone(_toString(i,"stave%d")); sd.setPlacement(pv); sdet.add(sd); } // Set envelope volume attributes. envelope.setAttributes(description,x_det.regionStr(),x_det.limitsStr(),x_det.visStr()); return sdet; } DECLARE_DETELEMENT(athena_EcalBarrelHybrid,create_detector)