diff --git a/.gitlab-ci.yml b/.gitlab-ci.yml
index cad3764aa0372d82487befc63fcff8bb0b408166..fb99541dbe41ed9818b84c30c24e42e43cdb2c0d 100644
--- a/.gitlab-ci.yml
+++ b/.gitlab-ci.yml
@@ -82,10 +82,13 @@ compile:
   stage: docs
   before_script:
     - source .local/bin/env.sh
-    - sed -i "s?<support inside?<\!--support inside?" compact/ecal_barrel.xml
-    - sed -i "s?</support>?</support-->?" compact/ecal_barrel.xml
+    - sed -i 's?<support inside?<\!--support inside?' compact/ecal_barrel_hybrid.xml 
+    - sed -i 's?</support>?</support-->?' compact/ecal_barrel_hybrid.xml
+    - sed -i 's?<fiber material?<\!--fiber material?' compact/ecal_barrel_hybrid.xml 
+    - sed -i 's?</fiber>?</fiber-->?' compact/ecal_barrel_hybrid.xml
     - echo $DETECTOR_PATH
-    - cp compact/ecal_barrel.xml ${DETECTOR_PATH}/compact/ecal_barrel.xml
+    - cp compact/ecal_barrel_hybrid.xml ${DETECTOR_PATH}/compact/ecal_barrel_hybrid.xml
+    - env
   needs:
     - ["common:detector"]
 
@@ -194,7 +197,6 @@ benchmarks:detector:
     strategy: depend
   needs: ["overlap_check_tgeo","overlap_check_geant4","report"]
 
-
     #benchmarks:reconstruction:
     #  stage: deploy
     #  variables:
diff --git a/bin/make_dawn_views b/bin/make_dawn_views
index da23a33a002e5302dc08055b3f3378b1a56c50c1..fe13723b61057071e1628ad689853f1dcf49b147 100755
--- a/bin/make_dawn_views
+++ b/bin/make_dawn_views
@@ -97,11 +97,12 @@ rm -f *.prim
 
 if [  "${DETECTOR_ONLY}" -eq "1" ] ; then
 
+  # timeout --preserve-status --signal=SIGTERM 120s \
   ./scripts/run_detector_simulation.py  \
     --compact ${DETECTOR_PATH}/athena.xml \
   -i scripts/input_data/few_events.hepmc \
   -o derp.root -n 1 \
-  --ui csh --vis -b -m macro/dawn_picture.mac & 
+  --ui csh --vis -b -m macro/dawn_picture.mac &
 
 sleep 10
 echo "sleeping 20 secs ..  " 
@@ -115,7 +116,8 @@ kill %1
 else 
 
   echo " Running simulation for tracks"
-./scripts/run_detector_simulation.py \
+  # timeout --preserve-status --signal=SIGTERM 120s \
+  ./scripts/run_detector_simulation.py \
     --compact ${DETECTOR_PATH}/athena.xml \
   -i scripts/input_data/few_events.hepmc \
   -o derp.root -s ${SKIP_EVENTS} -n 1 \
@@ -147,7 +149,7 @@ fi
 #sleep 20 
 #kill %1
 
-[[ -f "g4_0000.prim" ]]  || exit -1
+[[ -f "g4_0000.prim" ]]  ||  exit -1
 
 echo "simulating done" 
 #npsim --runType vis \
diff --git a/compact/ecal.xml b/compact/ecal.xml
index 9761fd9ba7e3e6f685b54ff6aa1cf0c90e9c0034..4e19bb166918e542fa6bd59c7a5d4cb713b8683e 100644
--- a/compact/ecal.xml
+++ b/compact/ecal.xml
@@ -16,8 +16,10 @@
   <display>
   </display>
 
-  <include ref="ecal_barrel.xml"/>
-      <!--<include ref="ce_ecal.xml"/>-->
+  <!-- <include ref="ecal_barrel.xml"/> -->
+  <include ref="ecal_barrel_hybrid.xml"/>
+  
+  <!--<include ref="ce_ecal.xml"/>-->
   <include ref="ce_ecal_crystal_glass.xml"/>
   <detectors>
 
diff --git a/compact/ecal_barrel_hybrid.xml b/compact/ecal_barrel_hybrid.xml
new file mode 100644
index 0000000000000000000000000000000000000000..663ee492477dd3ccb91bbc07edf7b2beed9f54f3
--- /dev/null
+++ b/compact/ecal_barrel_hybrid.xml
@@ -0,0 +1,145 @@
+<lccdd>
+
+    <display>
+      <vis name="EcalBarrelEnvelope_vis" alpha="0.9" r="0.99" g="0.5" b="0" showDaughters="true" visible="false" />
+      <vis name="EcalBarrelStave_vis"    alpha="0.9" r="0.99" g="0.5" b="0" showDaughters="true" visible="false" />
+      <vis name="EcalBarrelFiberLayerVis" alpha="1.0" r="102/256" g="102/256" b="102/256" showDaughters="false" visible="true" />
+      <vis name="EcalBarrelFiberVis" alpha="1.0" r="0/256" g="130/256" b="202/256" showDaughters="false" visible="false" />
+    </display>
+  <define>
+    <comment>
+      ---------------------------------------
+      EM Calorimeter Parameters with AstroPix
+      ---------------------------------------
+    </comment>
+    <constant name="EcalBarrel_Support_thickness"    value="5*cm"/>
+    <constant name="EcalBarrel_SiliconThickness"     value="500*um"/>
+    <constant name="EcalBarrel_ElectronicsThickness" value="150*um"/>
+    <constant name="EcalBarrel_CopperThickness"      value="100*um"/>
+    <constant name="EcalBarrel_KaptonThickness"      value="200*um"/>
+    <constant name="EcalBarrel_EpoxyThickness"       value="100*um"/>
+    <constant name="EcalBarrel_CarbonThickness"      value="0.5*mm"/>
+    <constant name="EcalBarrel_CarbonSpacerWidth"    value="4*mm"/>
+    <constant name="EcalBarrel_LayerSpacing"         value="6.0*mm"/>
+    <constant name="EcalBarrel_FiberRadius"          value="0.5*mm"/>
+    <constant name="EcalBarrel_FiberXSpacing"        value="5.0*mm"/>
+    <constant name="EcalBarrel_FiberZSpacing"        value="5.0*mm"/>
+    <comment> 
+      For Pb/SiFi (GlueX):  X0 ~ 1.45 cm
+      For W/SiFi (sPHENIX): X0 ~ 0.7 cm (but different fibers orientation)
+    </comment>
+    <constant name="EcalBarrel_RadiatorThickness"    value="1.5*cm"/>
+    <constant name="EcalBarrel_ModRepeat"            value="CaloSides"/> 
+    <constant name="EcalBarrel_ModLength"            value="0.5*m"/>
+    <constant name="EcalBarrel_ModWidth"             value="0.5*m"/>
+    <constant name="EcalBarrel_AvailThickness"       value="EcalBarrel_TotalThickness-EcalBarrel_Support_thickness"/>
+    <constant name="EcalBarrel_ImagingLayerThickness"
+      value="EcalBarrel_SiliconThickness
+      + EcalBarrel_ElectronicsThickness
+      + EcalBarrel_CopperThickness
+      + EcalBarrel_KaptonThickness
+      + EcalBarrel_EpoxyThickness
+      + EcalBarrel_CarbonThickness
+      + EcalBarrel_LayerSpacing
+      + EcalBarrel_RadiatorThickness"/>
+
+    <constant name="EcalBarrelImagingLayers_max"  value="6"/>
+    <constant name="EcalBarrelImagingLayers"  value="min(EcalBarrelImagingLayers_max, floor(EcalBarrel_AvailThickness/EcalBarrel_ImagingLayerThickness))"/>
+    <constant name="EcalBarrel_FiberLayerThickness_max" value="max(0, EcalBarrel_AvailThickness-(EcalBarrelImagingLayers*EcalBarrel_ImagingLayerThickness))"/>
+    <constant name="EcalBarrel_FiberLayerThickness" value="EcalBarrel_FiberZSpacing*12*14"/>
+  </define>
+
+  <limits>
+  </limits>
+
+  <regions>
+  </regions>
+
+  <display>
+  </display>
+
+  <detectors>
+
+    <comment>
+      ---------------------
+      Barrel EM Calorimeter
+      ---------------------
+      A layered EM calorimeter with tungsten and silicon (AstroPix)
+    </comment>
+    <detector
+      id="ECalBarrel_ID"
+      name="EcalBarrel"
+      type="athena_EcalBarrelHybrid"
+      readout="EcalBarrelHits"
+      calorimeterType="EM_BARREL"
+      vis="EcalBarrelEnvelope_vis"
+      offset="EcalBarrel_offset">
+      <dimensions numsides="EcalBarrel_ModRepeat" 
+        rmin="EcalBarrel_rmin" 
+        z="EcalBarrel_length"/>
+      <staves vis="EcalBarrelStave_vis">
+        <support inside="true"  material="Steel235" vis="AnlOrange"
+          thickness="EcalBarrel_Support_thickness"
+          n_beams="3" grid_size="25.0*cm" >
+        </support>
+      </staves>
+      <comment>
+        ---------------------------
+        Imaging layers with silicon
+        ---------------------------
+      </comment>
+      <layer repeat="EcalBarrelImagingLayers" vis="AnlBlue">  
+        <slice material="Silicon" thickness="EcalBarrel_SiliconThickness" sensitive="yes" limits="cal_limits" vis="AnlGray"/>
+        <slice material="Silicon" thickness="EcalBarrel_ElectronicsThickness" vis="AnlGold"/>
+        <slice material="Copper" thickness="EcalBarrel_CopperThickness" vis="AnlGray"/>
+        <slice material="Kapton" thickness="EcalBarrel_KaptonThickness" vis="AnlGold"/>
+        <slice material="Epoxy" thickness="EcalBarrel_EpoxyThickness" vis="AnlGray"/>
+        <slice material="CarbonFiber" thickness="EcalBarrel_CarbonThickness" vis="AnlGold"/>
+        <slice material="Lead" thickness="EcalBarrel_RadiatorThickness" vis="EcalBarrelFibersVis">
+          <fiber material="PlasticScint" 
+            sensitive="yes"
+            vis="EcalBarrelFiberVis"
+            radius="EcalBarrel_FiberRadius" 
+            spacing_x="EcalBarrel_FiberXSpacing" 
+            spacing_z="EcalBarrel_FiberZSpacing"/>
+        </slice> 
+        <slice material="Air" thickness="EcalBarrel_LayerSpacing" vis="AnlGold"/>
+      </layer>
+      <comment>
+        ---------------------------
+        Pure Scint Fiber layer
+        ---------------------------
+      </comment>
+      <layer repeat="1" vis="AnlBlue">
+        <slice material="Lead" thickness="min(EcalBarrel_FiberLayerThickness_max, EcalBarrel_FiberLayerThickness)" 
+          vis="EcalBarrelFiberLayerVis">
+          <!-- <fiber material="PlasticScint" 
+            sensitive="yes"
+            vis="EcalBarrelFiberVis"
+            radius="EcalBarrel_FiberRadius" 
+            spacing_x="EcalBarrel_FiberXSpacing" 
+            spacing_z="EcalBarrel_FiberZSpacing">
+          </fiber> -->
+        </slice>
+      </layer>
+     
+    </detector>
+  </detectors>
+
+  <readouts>
+    <readout name="EcalBarrelHits">
+      <segmentation type="MultiSegmentation" key="fiber">
+        <segmentation name="LongiSeg" key_value="0x0" type="CartesianGridXY" grid_size_x="0.5*mm" grid_size_y="0.5*mm"/>
+       -<segmentation name="RadialSeg" key_min="0x1" key_max="0xffffffff" type="NoSegmentation"/>
+      </segmentation>
+      <hits_collections>
+          <hits_collection name="EcalBarrelHits" key="fiber" key_value="0x0"/>
+          <hits_collection name="EcalBarrelScFiHits" key="fiber" key_min="0x1" key_max="0xffffffff"/>
+      </hits_collections>
+      <id>system:8,module:6,layer:6,slice:4,grid:6,fiber:8,x:38:-12,y:-14</id>
+    </readout>
+  </readouts>
+
+
+
+</lccdd>
diff --git a/compact/materials.xml b/compact/materials.xml
index 316d0cc3de2c572dfb9732abc50fb046677cfa76..47eaeb078819bf85964007834d1a811ebeeee0c3 100644
--- a/compact/materials.xml
+++ b/compact/materials.xml
@@ -147,6 +147,12 @@
     <composite n="12" ref="H"/>
     <composite n="3" ref="O"/>
   </material>
+  <material name="TungstenPowder">
+    <D value="11.25" unit="g / cm3"/>
+    <fraction n="0.954" ref="W"/>
+    <fraction n="0.040" ref="Ni"/>
+    <fraction n="0.006" ref="Fe"/>
+  </material>
   <material name="TungstenDens23">
     <D value="17.7" unit="g / cm3"/>
     <fraction n="0.925" ref="W"/>
diff --git a/src/BarrelCalorimeterHybrid_geo.cpp b/src/BarrelCalorimeterHybrid_geo.cpp
new file mode 100644
index 0000000000000000000000000000000000000000..ed8490a5f181d6cb8da39038fea16c5999de847d
--- /dev/null
+++ b/src/BarrelCalorimeterHybrid_geo.cpp
@@ -0,0 +1,426 @@
+//==========================================================================
+//  AIDA Detector description implementation
+//--------------------------------------------------------------------------
+// Copyright (C) Organisation europeenne pour la Recherche nucleaire (CERN)
+// All rights reserved.
+//
+// For the licensing terms see $DD4hepINSTALL/LICENSE.
+// For the list of contributors see $DD4hepINSTALL/doc/CREDITS.
+//
+// Author     : M.Frank
+//
+//==========================================================================
+//
+// Specialized generic detector constructor
+//
+//==========================================================================
+//
+// Implementation of the Sci Fiber geometry: M. Żurek 07/19/2021
+#include "DD4hep/DetFactoryHelper.h"
+#include "XML/Layering.h"
+#include "Math/Point2D.h"
+#include "TGeoPolygon.h"
+#include "TMath.h"
+
+using namespace std;
+using namespace dd4hep;
+using namespace dd4hep::detail;
+
+typedef ROOT::Math::XYPoint Point;
+
+// Fill fiber lattice into trapezoid starting from position (0,0) in x-z coordinate system
+vector<Point> fiberPositions(double radius, double x_spacing, double z_spacing, double x, double z, double phi, double spacing_tol = 1e-2) {
+  // z_spacing - distance between fiber layers in z
+  // x_spacing - distance between fiber centers in x
+  // x - half-length of the shorter (bottom) base of the trapezoid
+  // z - height of the trapezoid
+  // phi - angle between z and trapezoid arm
+
+  vector<Point> positions;
+  int z_layers = floor((z/2-radius-spacing_tol)/z_spacing); // number of layers that fit in z/2
+
+    double z_pos = 0.;
+    double x_pos = 0.;
+
+    for(int l = -z_layers; l < z_layers+1; l++) {
+
+      z_pos = l*z_spacing;
+      double x_max = x + (z/2. + z_pos)*tan(phi) - spacing_tol; // calculate max x at particular z_pos
+      (l % 2 == 0) ? x_pos = 0. : x_pos = x_spacing/2; // account for spacing/2 shift
+
+      while(x_pos < (x_max - radius)) {
+        positions.push_back(Point(x_pos,z_pos));
+        if(x_pos != 0.) positions.push_back(Point(-x_pos,z_pos)); // using symmetry around x=0
+        x_pos += x_spacing;
+      }
+    }
+
+    return positions;
+}
+
+// Calculate number of divisions for the readout grid for the fiber layers
+std::pair<int, int> getNdivisions(double x, double z, double dx, double dz){
+  // x and z defined as in vector<Point> fiberPositions
+  // dx, dz - size of the grid in x and z we want to get close to with the polygons
+  // See also descripltion when the function is called
+
+  double SiPMsize = 13.0*mm;
+  double grid_min = SiPMsize + 3.0*mm;
+
+  if(dz < grid_min) {
+    dz = grid_min;
+  }
+
+  if(dx < grid_min) {
+    dx = grid_min;
+  }
+
+  int nfit_cells_z = floor(z/dz);
+  int n_cells_z = nfit_cells_z;
+
+  if(nfit_cells_z == 0) n_cells_z++;
+
+  int nfit_cells_x = floor((2*x)/dx);
+  int n_cells_x = nfit_cells_x;
+
+  if(nfit_cells_x == 0) n_cells_x++;
+
+  return std::make_pair(n_cells_x, n_cells_z);
+
+}
+
+// Calculate dimensions of the polygonal grid in the cartesian coordinate system x-z
+vector< tuple<int, Point, Point, Point, Point> > gridPoints(int div_x, int div_z, double x, double z, double phi) {
+  // x, z and phi defined as in vector<Point> fiberPositions
+  // div_x, div_z - number of divisions in x and z
+  double dz = z/div_z;
+
+  std::vector<std::tuple<int, Point, Point, Point, Point>> points;
+
+  for(int iz = 0; iz < div_z + 1; iz++){
+    for(int ix = 0; ix < div_x + 1; ix++){
+      double A_z = -z/2 + iz*dz;
+      double B_z = -z/2 + (iz+1)*dz;
+
+      double len_x_for_z = 2*(x+iz*dz*tan(phi));
+      double len_x_for_z_plus_1 = 2*(x + (iz+1)*dz*tan(phi));
+
+      double dx_for_z = len_x_for_z/div_x;
+      double dx_for_z_plus_1 = len_x_for_z_plus_1/div_x;
+
+      double A_x = -len_x_for_z/2. + ix*dx_for_z;
+      double B_x = -len_x_for_z_plus_1/2. + ix*dx_for_z_plus_1;
+
+      double C_z = B_z;
+      double D_z = A_z;
+      double C_x = B_x + dx_for_z_plus_1;
+      double D_x = A_x + dx_for_z;
+
+      int id = ix + div_x * iz;
+
+      auto A = Point(A_x, A_z);
+      auto B = Point(B_x, B_z);
+      auto C = Point(C_x, C_z);
+      auto D = Point(D_x, D_z);
+
+      // vertex points filled in the clock-wise direction
+      points.push_back(make_tuple(id, A, B, C, D));
+
+    }
+  }
+
+  return points;
+
+}
+
+// Create detector
+static Ref_t create_detector(Detector& description, xml_h e, SensitiveDetector sens)  {
+  static double tolerance = 0e0;
+  Layering      layering (e);
+  xml_det_t     x_det     = e;
+  Material      air       = description.air();
+  int           det_id    = x_det.id();
+  string        det_name  = x_det.nameStr();
+  xml_comp_t    x_staves  = x_det.staves();
+  xml_comp_t    x_dim     = x_det.dimensions();
+  int           nsides    = x_dim.numsides();
+
+  double        inner_r   = x_dim.rmin();
+  double        dphi      = (2*M_PI/nsides);
+  double        hphi      = dphi/2;
+  double        support_thickness = 0.0;
+  if(x_staves.hasChild("support")){
+    support_thickness = getAttrOrDefault(x_staves.child(_U(support)), _U(thickness), 5.0 * cm);
+  }
+  double        mod_z     = layering.totalThickness() + support_thickness;
+  double        outer_r   = inner_r + mod_z;
+  double        totThick  = mod_z;
+  double        offset    = x_det.attr<double>(_Unicode(offset));
+  DetElement    sdet      (det_name,det_id);
+  Volume        motherVol = description.pickMotherVolume(sdet);
+  PolyhedraRegular hedra  (nsides,inner_r,inner_r+totThick+tolerance*2e0,x_dim.z());
+  Volume        envelope  (det_name,hedra,air);
+  PlacedVolume  env_phv   = motherVol.placeVolume(envelope,Transform3D(Translation3D(0,0,offset)*RotationZ(M_PI/nsides)));
+
+  env_phv.addPhysVolID("system",det_id);
+  sdet.setPlacement(env_phv);
+
+  DetElement    stave_det("stave0",det_id);
+  double dx = 0.0; //mod_z / std::sin(dphi); // dx per layer
+
+  // Compute the top and bottom face measurements.
+  double trd_x2 = (2 * std::tan(hphi) * outer_r - dx)/2 - tolerance;
+  double trd_x1 = (2 * std::tan(hphi) * inner_r + dx)/2 - tolerance;
+  double trd_y1 = x_dim.z()/2 - tolerance;
+  double trd_y2 = trd_y1;
+  double trd_z  = mod_z/2 - tolerance;
+
+  // Create the trapezoid for the stave.
+  Trapezoid trd(trd_x1, // Outer side, i.e. the "long" X side.
+                trd_x2, // Inner side, i.e. the "short"  X side.
+                trd_y1, // Corresponds to subdetector (or module) Z.
+                trd_y2, //
+                trd_z); // Thickness, in Y for top stave, when rotated.
+
+  Volume mod_vol("stave",trd,air);
+  double l_pos_z = -(layering.totalThickness() / 2) - support_thickness/2.0;
+
+  //double trd_x2_support = trd_x1;
+  double trd_x1_support = (2 * std::tan(hphi) * outer_r - dx- support_thickness)/2 - tolerance;
+
+  Solid  support_frame_s;
+  // optional stave support
+  if(x_staves.hasChild("support")){
+    xml_comp_t x_support         = x_staves.child(_U(support));
+    // is the support on the inside surface?
+    bool       is_inside_support = getAttrOrDefault<bool>(x_support, _Unicode(inside), true);
+    // number of "beams" running the length of the stave.
+    int    n_beams        = getAttrOrDefault<int>(x_support, _Unicode(n_beams), 3);
+    double beam_thickness = support_thickness / 4.0; // maybe a parameter later...
+    trd_x1_support        = (2 * std::tan(hphi) * (outer_r - support_thickness + beam_thickness)) / 2 - tolerance;
+    double grid_size      = getAttrOrDefault(x_support, _Unicode(grid_size), 25.0 * cm);
+    double beam_width     = 2.0 * trd_x1_support / (n_beams + 1); // quick hack to make some gap between T beams
+
+    double cross_beam_thickness    = support_thickness/4.0;
+    //double trd_x1_support    = (2 * std::tan(hphi) * (inner_r + beam_thickness)) / 2 - tolerance;
+    double trd_x2_support = trd_x2;
+
+    int n_cross_supports = std::floor((trd_y1-cross_beam_thickness)/grid_size);
+
+    Box        beam_vert_s(beam_thickness / 2.0 - tolerance, trd_y1, support_thickness / 2.0 - tolerance);
+    Box        beam_hori_s(beam_width / 2.0 - tolerance, trd_y1, beam_thickness / 2.0 - tolerance);
+    UnionSolid T_beam_s(beam_vert_s, beam_hori_s, Position(0, 0, -support_thickness / 2.0 + beam_thickness / 2.0));
+
+    // cross supports
+    Trapezoid  trd_support(trd_x1_support,trd_x2_support,
+                           beam_thickness / 2.0 - tolerance, beam_thickness / 2.0 - tolerance,
+                          support_thickness / 2.0 - tolerance - cross_beam_thickness/2.0);
+    UnionSolid support_array_start_s(T_beam_s,trd_support,Position(0,0,cross_beam_thickness/2.0));
+    for (int isup = 0; isup < n_cross_supports; isup++) {
+      support_array_start_s = UnionSolid(support_array_start_s, trd_support, Position(0, -1.0 * isup * grid_size, cross_beam_thickness/2.0));
+      support_array_start_s = UnionSolid(support_array_start_s, trd_support, Position(0, 1.0 * isup * grid_size, cross_beam_thickness/2.0));
+    }
+    support_array_start_s =
+        UnionSolid(support_array_start_s, beam_hori_s,
+                   Position(-1.8 * 0.5*(trd_x1+trd_x2_support) / n_beams, 0, -support_thickness / 2.0 + beam_thickness / 2.0));
+    support_array_start_s =
+        UnionSolid(support_array_start_s, beam_hori_s,
+                   Position(1.8 * 0.5*(trd_x1+trd_x2_support) / n_beams, 0, -support_thickness / 2.0 + beam_thickness / 2.0));
+    support_array_start_s =
+        UnionSolid(support_array_start_s, beam_vert_s, Position(-1.8 * 0.5*(trd_x1+trd_x2_support) / n_beams, 0, 0));
+    support_array_start_s =
+        UnionSolid(support_array_start_s, beam_vert_s, Position(1.8 * 0.5*(trd_x1+trd_x2_support) / n_beams, 0, 0));
+
+    support_frame_s = support_array_start_s;
+
+    Material support_mat = description.material(x_support.materialStr());
+    Volume   support_vol("support_frame_v", support_frame_s, support_mat);
+    support_vol.setVisAttributes(description,x_support.visStr());
+
+    // figure out how to best place
+    //auto pv = mod_vol.placeVolume(support_vol, Position(0.0, 0.0, l_pos_z + support_thickness / 2.0));
+    auto pv = mod_vol.placeVolume(support_vol, Position(0.0, 0.0, -l_pos_z - support_thickness / 2.0));
+  }
+  //l_pos_z += support_thickness;
+
+  sens.setType("calorimeter");
+  { // =====  buildBarrelStave(description, sens, module_volume) =====
+    // Parameters for computing the layer X dimension:
+    double stave_z  = trd_y1;
+    double tan_hphi = std::tan(hphi);
+    double l_dim_x  = trd_x1; // Starting X dimension for the layer.
+
+    // Loop over the sets of layer elements in the detector.
+    int l_num = 1;
+    for(xml_coll_t li(x_det,_U(layer)); li; ++li)  {
+      xml_comp_t x_layer = li;
+      int repeat = x_layer.repeat();
+      // Loop over number of repeats for this layer.
+      for (int j=0; j<repeat; j++)    {
+        string l_name = _toString(l_num,"layer%d");
+        double l_thickness = layering.layer(l_num-1)->thickness();  // Layer's thickness.
+
+        Position   l_pos(0,0,l_pos_z+l_thickness/2);      // Position of the layer.
+	      double l_trd_x1 = l_dim_x - tolerance;
+	      double l_trd_x2 = l_dim_x + l_thickness*tan_hphi - tolerance;
+	      double l_trd_y1 = stave_z-tolerance;
+	      double l_trd_y2 = l_trd_y1;
+	      double l_trd_z  = l_thickness/2-tolerance;
+
+        Trapezoid  l_trd(l_trd_x1,l_trd_x2,l_trd_y1,l_trd_y2,l_trd_z);
+        Volume     l_vol(l_name,l_trd,air);
+        DetElement layer(stave_det, l_name, det_id);
+
+        // Loop over the sublayers or slices for this layer.
+        int s_num = 1;
+        double s_pos_z = -(l_thickness / 2);
+        for(xml_coll_t si(x_layer,_U(slice)); si; ++si)  {
+          xml_comp_t x_slice = si;
+          string     s_name  = _toString(s_num,"slice%d");
+          double     s_thick = x_slice.thickness();
+          Volume     s_vol(s_name);
+          DetElement slice(layer,s_name,det_id);
+
+	          double s_trd_x1 = l_dim_x + (s_pos_z+l_thickness/2)*tan_hphi - tolerance;
+	          double s_trd_x2 = l_dim_x + (s_pos_z+l_thickness/2+s_thick)*tan_hphi - tolerance;
+	          double s_trd_y1 = stave_z-tolerance;
+	          double s_trd_y2 = s_trd_y1;
+	          double s_trd_z  = s_thick/2-tolerance;
+
+
+            Trapezoid  s_trd(s_trd_x1, s_trd_x2, s_trd_y1, s_trd_y2, s_trd_z);
+	          s_vol.setSolid(s_trd);
+	          s_vol.setMaterial(description.material(x_slice.materialStr()));
+
+
+          if (x_slice.hasChild("fiber")) {
+            xml_comp_t x_fiber = x_slice.child(_Unicode(fiber));
+            double f_radius = getAttrOrDefault(x_fiber, _U(radius), 0.1 * cm);
+            double f_spacing_x = getAttrOrDefault(x_fiber, _Unicode(spacing_x), 0.122 * cm);
+            double f_spacing_z = getAttrOrDefault(x_fiber, _Unicode(spacing_z), 0.134 * cm);
+            std::string f_id_grid = getAttrOrDefault(x_fiber, _Unicode(identifier_grid), "grid");
+            std::string f_id_fiber = getAttrOrDefault(x_fiber, _Unicode(identifier_fiber), "fiber");
+
+            // Calculate fiber positions inside the slice
+            vector<Point> f_pos = fiberPositions(f_radius, f_spacing_x, f_spacing_z, s_trd_x1, s_thick-tolerance, hphi);
+            // Sort fiber IDs fo better organization
+            sort(f_pos.begin(), f_pos.end(),
+              [](const Point &p1, const Point &p2) {
+              if (p1.y() == p2.y()) { return p1.x() < p2.x(); }
+                return p1.y() < p2.y();
+              });
+
+            Tube f_tube(0, f_radius, stave_z-tolerance);
+
+            // Set up the readout grid for the fiber layers
+            // Trapezoid is divided into segments with equal dz and equal number of divisions in x
+            // Every segment is a polygon that can be attached later to the lightguide
+            // The grid size is assumed to be ~2x2 cm (starting values). This is to be larger than
+            // SiPM chip (for GlueX 13mmx13mm: 4x4 grid 3mmx3mm with 3600 50×50 μm pixels each)
+            // See, e.g., https://arxiv.org/abs/1801.03088 Fig. 2d
+
+            // Calculate number of divisions
+            pair<int, int> grid_div = getNdivisions(s_trd_x1, s_thick-tolerance, 2.0*cm, 2.0*cm);
+            // Calculate polygonal grid coordinates (vertices)
+            vector<tuple<int, Point, Point, Point, Point>> grid_vtx = gridPoints(grid_div.first, grid_div.second, s_trd_x1, s_thick-tolerance, hphi);
+
+            vector<int> f_id_count(grid_div.first*grid_div.second,0);
+            for (auto &p : f_pos) {
+              int f_grid_id = -1;
+              int f_id = -1;
+              // Check to which grid fiber belongs to
+              for (auto &poly_vtx : grid_vtx) {
+                auto [grid_id, vtx_a, vtx_b, vtx_c, vtx_d] = poly_vtx;
+                double poly_x[4] = {vtx_a.x(), vtx_b.x(), vtx_c.x(), vtx_d.x()};
+                double poly_y[4] = {vtx_a.y(), vtx_b.y(), vtx_c.y(), vtx_d.y()};
+                double f_xy[2] = {p.x(), p.y()};
+
+                TGeoPolygon poly(4);
+                poly.SetXY(poly_x,poly_y);
+                poly.FinishPolygon();
+
+                if(poly.Contains(f_xy)) {
+                  f_grid_id = grid_id;
+                  f_id = f_id_count[grid_id];
+                  f_id_count[grid_id]++;
+                }
+              }
+
+              string f_name = "fiber" + to_string(f_grid_id) + "_" + to_string(f_id);
+              Volume f_vol(f_name, f_tube, description.material(x_fiber.materialStr()));
+              DetElement fiber(slice, f_name, det_id);
+              if ( x_fiber.isSensitive() ) {
+                f_vol.setSensitiveDetector(sens);
+              }
+              fiber.setAttributes(description,f_vol,x_fiber.regionStr(),x_fiber.limitsStr(),x_fiber.visStr());
+
+              // Fiber placement
+              Transform3D f_tr(RotationZYX(0,0,M_PI*0.5),Position(p.x(), 0 ,p.y()));
+              PlacedVolume fiber_phv = s_vol.placeVolume(f_vol, f_tr);
+              fiber_phv.addPhysVolID(f_id_grid, f_grid_id + 1).addPhysVolID(f_id_fiber, f_id + 1);
+              fiber.setPlacement(fiber_phv);
+
+	          }
+          }
+
+          if ( x_slice.isSensitive() ) {
+            s_vol.setSensitiveDetector(sens);
+          }
+
+          slice.setAttributes(description,s_vol,x_slice.regionStr(),x_slice.limitsStr(),x_slice.visStr());
+
+          // Slice placement.
+          PlacedVolume slice_phv = l_vol.placeVolume(s_vol,Position(0,0,s_pos_z+s_thick/2));
+          slice_phv.addPhysVolID("slice", s_num);
+          slice.setPlacement(slice_phv);
+          // Increment Z position of slice.
+          s_pos_z += s_thick;
+
+          // Increment slice number.
+          ++s_num;
+        }
+
+        // Set region, limitset, and vis of layer.
+        layer.setAttributes(description,l_vol,x_layer.regionStr(),x_layer.limitsStr(),x_layer.visStr());
+
+        PlacedVolume layer_phv = mod_vol.placeVolume(l_vol,l_pos);
+        layer_phv.addPhysVolID("layer", l_num);
+        layer.setPlacement(layer_phv);
+        // Increment to next layer Z position.
+        double xcut = l_thickness * tan_hphi;
+        l_dim_x += xcut;
+        l_pos_z += l_thickness;
+        ++l_num;
+      }
+    }
+  }
+
+  // Set stave visualization.
+  if ( x_staves )   {
+    mod_vol.setVisAttributes(description.visAttributes(x_staves.visStr()));
+  }
+  // Phi start for a stave.
+  double phi = M_PI / nsides;
+  double mod_x_off = dx / 2;             // Stave X offset, derived from the dx.
+  double mod_y_off = inner_r + mod_z/2;  // Stave Y offset
+
+  // Create nsides staves.
+  for (int i = 0; i < nsides; i++, phi -= dphi)      { // i is module number
+    // Compute the stave position
+    double m_pos_x = mod_x_off * std::cos(phi) - mod_y_off * std::sin(phi);
+    double m_pos_y = mod_x_off * std::sin(phi) + mod_y_off * std::cos(phi);
+    Transform3D tr(RotationZYX(0,phi,M_PI*0.5),Translation3D(-m_pos_x,-m_pos_y,0));
+    PlacedVolume pv = envelope.placeVolume(mod_vol,tr);
+    pv.addPhysVolID("system",det_id);
+    pv.addPhysVolID("module",i+1);
+    DetElement sd = i==0 ? stave_det : stave_det.clone(_toString(i,"stave%d"));
+    sd.setPlacement(pv);
+    sdet.add(sd);
+  }
+
+  // Set envelope volume attributes.
+  envelope.setAttributes(description,x_det.regionStr(),x_det.limitsStr(),x_det.visStr());
+  return sdet;
+}
+
+DECLARE_DETELEMENT(athena_EcalBarrelHybrid,create_detector)