diff --git a/.gitlab-ci.yml b/.gitlab-ci.yml index cad3764aa0372d82487befc63fcff8bb0b408166..fb99541dbe41ed9818b84c30c24e42e43cdb2c0d 100644 --- a/.gitlab-ci.yml +++ b/.gitlab-ci.yml @@ -82,10 +82,13 @@ compile: stage: docs before_script: - source .local/bin/env.sh - - sed -i "s?<support inside?<\!--support inside?" compact/ecal_barrel.xml - - sed -i "s?</support>?</support-->?" compact/ecal_barrel.xml + - sed -i 's?<support inside?<\!--support inside?' compact/ecal_barrel_hybrid.xml + - sed -i 's?</support>?</support-->?' compact/ecal_barrel_hybrid.xml + - sed -i 's?<fiber material?<\!--fiber material?' compact/ecal_barrel_hybrid.xml + - sed -i 's?</fiber>?</fiber-->?' compact/ecal_barrel_hybrid.xml - echo $DETECTOR_PATH - - cp compact/ecal_barrel.xml ${DETECTOR_PATH}/compact/ecal_barrel.xml + - cp compact/ecal_barrel_hybrid.xml ${DETECTOR_PATH}/compact/ecal_barrel_hybrid.xml + - env needs: - ["common:detector"] @@ -194,7 +197,6 @@ benchmarks:detector: strategy: depend needs: ["overlap_check_tgeo","overlap_check_geant4","report"] - #benchmarks:reconstruction: # stage: deploy # variables: diff --git a/bin/make_dawn_views b/bin/make_dawn_views index da23a33a002e5302dc08055b3f3378b1a56c50c1..fe13723b61057071e1628ad689853f1dcf49b147 100755 --- a/bin/make_dawn_views +++ b/bin/make_dawn_views @@ -97,11 +97,12 @@ rm -f *.prim if [ "${DETECTOR_ONLY}" -eq "1" ] ; then + # timeout --preserve-status --signal=SIGTERM 120s \ ./scripts/run_detector_simulation.py \ --compact ${DETECTOR_PATH}/athena.xml \ -i scripts/input_data/few_events.hepmc \ -o derp.root -n 1 \ - --ui csh --vis -b -m macro/dawn_picture.mac & + --ui csh --vis -b -m macro/dawn_picture.mac & sleep 10 echo "sleeping 20 secs .. " @@ -115,7 +116,8 @@ kill %1 else echo " Running simulation for tracks" -./scripts/run_detector_simulation.py \ + # timeout --preserve-status --signal=SIGTERM 120s \ + ./scripts/run_detector_simulation.py \ --compact ${DETECTOR_PATH}/athena.xml \ -i scripts/input_data/few_events.hepmc \ -o derp.root -s ${SKIP_EVENTS} -n 1 \ @@ -147,7 +149,7 @@ fi #sleep 20 #kill %1 -[[ -f "g4_0000.prim" ]] || exit -1 +[[ -f "g4_0000.prim" ]] || exit -1 echo "simulating done" #npsim --runType vis \ diff --git a/compact/ecal.xml b/compact/ecal.xml index 9761fd9ba7e3e6f685b54ff6aa1cf0c90e9c0034..4e19bb166918e542fa6bd59c7a5d4cb713b8683e 100644 --- a/compact/ecal.xml +++ b/compact/ecal.xml @@ -16,8 +16,10 @@ <display> </display> - <include ref="ecal_barrel.xml"/> - <!--<include ref="ce_ecal.xml"/>--> + <!-- <include ref="ecal_barrel.xml"/> --> + <include ref="ecal_barrel_hybrid.xml"/> + + <!--<include ref="ce_ecal.xml"/>--> <include ref="ce_ecal_crystal_glass.xml"/> <detectors> diff --git a/compact/ecal_barrel_hybrid.xml b/compact/ecal_barrel_hybrid.xml new file mode 100644 index 0000000000000000000000000000000000000000..663ee492477dd3ccb91bbc07edf7b2beed9f54f3 --- /dev/null +++ b/compact/ecal_barrel_hybrid.xml @@ -0,0 +1,145 @@ +<lccdd> + + <display> + <vis name="EcalBarrelEnvelope_vis" alpha="0.9" r="0.99" g="0.5" b="0" showDaughters="true" visible="false" /> + <vis name="EcalBarrelStave_vis" alpha="0.9" r="0.99" g="0.5" b="0" showDaughters="true" visible="false" /> + <vis name="EcalBarrelFiberLayerVis" alpha="1.0" r="102/256" g="102/256" b="102/256" showDaughters="false" visible="true" /> + <vis name="EcalBarrelFiberVis" alpha="1.0" r="0/256" g="130/256" b="202/256" showDaughters="false" visible="false" /> + </display> + <define> + <comment> + --------------------------------------- + EM Calorimeter Parameters with AstroPix + --------------------------------------- + </comment> + <constant name="EcalBarrel_Support_thickness" value="5*cm"/> + <constant name="EcalBarrel_SiliconThickness" value="500*um"/> + <constant name="EcalBarrel_ElectronicsThickness" value="150*um"/> + <constant name="EcalBarrel_CopperThickness" value="100*um"/> + <constant name="EcalBarrel_KaptonThickness" value="200*um"/> + <constant name="EcalBarrel_EpoxyThickness" value="100*um"/> + <constant name="EcalBarrel_CarbonThickness" value="0.5*mm"/> + <constant name="EcalBarrel_CarbonSpacerWidth" value="4*mm"/> + <constant name="EcalBarrel_LayerSpacing" value="6.0*mm"/> + <constant name="EcalBarrel_FiberRadius" value="0.5*mm"/> + <constant name="EcalBarrel_FiberXSpacing" value="5.0*mm"/> + <constant name="EcalBarrel_FiberZSpacing" value="5.0*mm"/> + <comment> + For Pb/SiFi (GlueX): X0 ~ 1.45 cm + For W/SiFi (sPHENIX): X0 ~ 0.7 cm (but different fibers orientation) + </comment> + <constant name="EcalBarrel_RadiatorThickness" value="1.5*cm"/> + <constant name="EcalBarrel_ModRepeat" value="CaloSides"/> + <constant name="EcalBarrel_ModLength" value="0.5*m"/> + <constant name="EcalBarrel_ModWidth" value="0.5*m"/> + <constant name="EcalBarrel_AvailThickness" value="EcalBarrel_TotalThickness-EcalBarrel_Support_thickness"/> + <constant name="EcalBarrel_ImagingLayerThickness" + value="EcalBarrel_SiliconThickness + + EcalBarrel_ElectronicsThickness + + EcalBarrel_CopperThickness + + EcalBarrel_KaptonThickness + + EcalBarrel_EpoxyThickness + + EcalBarrel_CarbonThickness + + EcalBarrel_LayerSpacing + + EcalBarrel_RadiatorThickness"/> + + <constant name="EcalBarrelImagingLayers_max" value="6"/> + <constant name="EcalBarrelImagingLayers" value="min(EcalBarrelImagingLayers_max, floor(EcalBarrel_AvailThickness/EcalBarrel_ImagingLayerThickness))"/> + <constant name="EcalBarrel_FiberLayerThickness_max" value="max(0, EcalBarrel_AvailThickness-(EcalBarrelImagingLayers*EcalBarrel_ImagingLayerThickness))"/> + <constant name="EcalBarrel_FiberLayerThickness" value="EcalBarrel_FiberZSpacing*12*14"/> + </define> + + <limits> + </limits> + + <regions> + </regions> + + <display> + </display> + + <detectors> + + <comment> + --------------------- + Barrel EM Calorimeter + --------------------- + A layered EM calorimeter with tungsten and silicon (AstroPix) + </comment> + <detector + id="ECalBarrel_ID" + name="EcalBarrel" + type="athena_EcalBarrelHybrid" + readout="EcalBarrelHits" + calorimeterType="EM_BARREL" + vis="EcalBarrelEnvelope_vis" + offset="EcalBarrel_offset"> + <dimensions numsides="EcalBarrel_ModRepeat" + rmin="EcalBarrel_rmin" + z="EcalBarrel_length"/> + <staves vis="EcalBarrelStave_vis"> + <support inside="true" material="Steel235" vis="AnlOrange" + thickness="EcalBarrel_Support_thickness" + n_beams="3" grid_size="25.0*cm" > + </support> + </staves> + <comment> + --------------------------- + Imaging layers with silicon + --------------------------- + </comment> + <layer repeat="EcalBarrelImagingLayers" vis="AnlBlue"> + <slice material="Silicon" thickness="EcalBarrel_SiliconThickness" sensitive="yes" limits="cal_limits" vis="AnlGray"/> + <slice material="Silicon" thickness="EcalBarrel_ElectronicsThickness" vis="AnlGold"/> + <slice material="Copper" thickness="EcalBarrel_CopperThickness" vis="AnlGray"/> + <slice material="Kapton" thickness="EcalBarrel_KaptonThickness" vis="AnlGold"/> + <slice material="Epoxy" thickness="EcalBarrel_EpoxyThickness" vis="AnlGray"/> + <slice material="CarbonFiber" thickness="EcalBarrel_CarbonThickness" vis="AnlGold"/> + <slice material="Lead" thickness="EcalBarrel_RadiatorThickness" vis="EcalBarrelFibersVis"> + <fiber material="PlasticScint" + sensitive="yes" + vis="EcalBarrelFiberVis" + radius="EcalBarrel_FiberRadius" + spacing_x="EcalBarrel_FiberXSpacing" + spacing_z="EcalBarrel_FiberZSpacing"/> + </slice> + <slice material="Air" thickness="EcalBarrel_LayerSpacing" vis="AnlGold"/> + </layer> + <comment> + --------------------------- + Pure Scint Fiber layer + --------------------------- + </comment> + <layer repeat="1" vis="AnlBlue"> + <slice material="Lead" thickness="min(EcalBarrel_FiberLayerThickness_max, EcalBarrel_FiberLayerThickness)" + vis="EcalBarrelFiberLayerVis"> + <!-- <fiber material="PlasticScint" + sensitive="yes" + vis="EcalBarrelFiberVis" + radius="EcalBarrel_FiberRadius" + spacing_x="EcalBarrel_FiberXSpacing" + spacing_z="EcalBarrel_FiberZSpacing"> + </fiber> --> + </slice> + </layer> + + </detector> + </detectors> + + <readouts> + <readout name="EcalBarrelHits"> + <segmentation type="MultiSegmentation" key="fiber"> + <segmentation name="LongiSeg" key_value="0x0" type="CartesianGridXY" grid_size_x="0.5*mm" grid_size_y="0.5*mm"/> + -<segmentation name="RadialSeg" key_min="0x1" key_max="0xffffffff" type="NoSegmentation"/> + </segmentation> + <hits_collections> + <hits_collection name="EcalBarrelHits" key="fiber" key_value="0x0"/> + <hits_collection name="EcalBarrelScFiHits" key="fiber" key_min="0x1" key_max="0xffffffff"/> + </hits_collections> + <id>system:8,module:6,layer:6,slice:4,grid:6,fiber:8,x:38:-12,y:-14</id> + </readout> + </readouts> + + + +</lccdd> diff --git a/compact/materials.xml b/compact/materials.xml index 316d0cc3de2c572dfb9732abc50fb046677cfa76..47eaeb078819bf85964007834d1a811ebeeee0c3 100644 --- a/compact/materials.xml +++ b/compact/materials.xml @@ -147,6 +147,12 @@ <composite n="12" ref="H"/> <composite n="3" ref="O"/> </material> + <material name="TungstenPowder"> + <D value="11.25" unit="g / cm3"/> + <fraction n="0.954" ref="W"/> + <fraction n="0.040" ref="Ni"/> + <fraction n="0.006" ref="Fe"/> + </material> <material name="TungstenDens23"> <D value="17.7" unit="g / cm3"/> <fraction n="0.925" ref="W"/> diff --git a/src/BarrelCalorimeterHybrid_geo.cpp b/src/BarrelCalorimeterHybrid_geo.cpp new file mode 100644 index 0000000000000000000000000000000000000000..ed8490a5f181d6cb8da39038fea16c5999de847d --- /dev/null +++ b/src/BarrelCalorimeterHybrid_geo.cpp @@ -0,0 +1,426 @@ +//========================================================================== +// AIDA Detector description implementation +//-------------------------------------------------------------------------- +// Copyright (C) Organisation europeenne pour la Recherche nucleaire (CERN) +// All rights reserved. +// +// For the licensing terms see $DD4hepINSTALL/LICENSE. +// For the list of contributors see $DD4hepINSTALL/doc/CREDITS. +// +// Author : M.Frank +// +//========================================================================== +// +// Specialized generic detector constructor +// +//========================================================================== +// +// Implementation of the Sci Fiber geometry: M. Żurek 07/19/2021 +#include "DD4hep/DetFactoryHelper.h" +#include "XML/Layering.h" +#include "Math/Point2D.h" +#include "TGeoPolygon.h" +#include "TMath.h" + +using namespace std; +using namespace dd4hep; +using namespace dd4hep::detail; + +typedef ROOT::Math::XYPoint Point; + +// Fill fiber lattice into trapezoid starting from position (0,0) in x-z coordinate system +vector<Point> fiberPositions(double radius, double x_spacing, double z_spacing, double x, double z, double phi, double spacing_tol = 1e-2) { + // z_spacing - distance between fiber layers in z + // x_spacing - distance between fiber centers in x + // x - half-length of the shorter (bottom) base of the trapezoid + // z - height of the trapezoid + // phi - angle between z and trapezoid arm + + vector<Point> positions; + int z_layers = floor((z/2-radius-spacing_tol)/z_spacing); // number of layers that fit in z/2 + + double z_pos = 0.; + double x_pos = 0.; + + for(int l = -z_layers; l < z_layers+1; l++) { + + z_pos = l*z_spacing; + double x_max = x + (z/2. + z_pos)*tan(phi) - spacing_tol; // calculate max x at particular z_pos + (l % 2 == 0) ? x_pos = 0. : x_pos = x_spacing/2; // account for spacing/2 shift + + while(x_pos < (x_max - radius)) { + positions.push_back(Point(x_pos,z_pos)); + if(x_pos != 0.) positions.push_back(Point(-x_pos,z_pos)); // using symmetry around x=0 + x_pos += x_spacing; + } + } + + return positions; +} + +// Calculate number of divisions for the readout grid for the fiber layers +std::pair<int, int> getNdivisions(double x, double z, double dx, double dz){ + // x and z defined as in vector<Point> fiberPositions + // dx, dz - size of the grid in x and z we want to get close to with the polygons + // See also descripltion when the function is called + + double SiPMsize = 13.0*mm; + double grid_min = SiPMsize + 3.0*mm; + + if(dz < grid_min) { + dz = grid_min; + } + + if(dx < grid_min) { + dx = grid_min; + } + + int nfit_cells_z = floor(z/dz); + int n_cells_z = nfit_cells_z; + + if(nfit_cells_z == 0) n_cells_z++; + + int nfit_cells_x = floor((2*x)/dx); + int n_cells_x = nfit_cells_x; + + if(nfit_cells_x == 0) n_cells_x++; + + return std::make_pair(n_cells_x, n_cells_z); + +} + +// Calculate dimensions of the polygonal grid in the cartesian coordinate system x-z +vector< tuple<int, Point, Point, Point, Point> > gridPoints(int div_x, int div_z, double x, double z, double phi) { + // x, z and phi defined as in vector<Point> fiberPositions + // div_x, div_z - number of divisions in x and z + double dz = z/div_z; + + std::vector<std::tuple<int, Point, Point, Point, Point>> points; + + for(int iz = 0; iz < div_z + 1; iz++){ + for(int ix = 0; ix < div_x + 1; ix++){ + double A_z = -z/2 + iz*dz; + double B_z = -z/2 + (iz+1)*dz; + + double len_x_for_z = 2*(x+iz*dz*tan(phi)); + double len_x_for_z_plus_1 = 2*(x + (iz+1)*dz*tan(phi)); + + double dx_for_z = len_x_for_z/div_x; + double dx_for_z_plus_1 = len_x_for_z_plus_1/div_x; + + double A_x = -len_x_for_z/2. + ix*dx_for_z; + double B_x = -len_x_for_z_plus_1/2. + ix*dx_for_z_plus_1; + + double C_z = B_z; + double D_z = A_z; + double C_x = B_x + dx_for_z_plus_1; + double D_x = A_x + dx_for_z; + + int id = ix + div_x * iz; + + auto A = Point(A_x, A_z); + auto B = Point(B_x, B_z); + auto C = Point(C_x, C_z); + auto D = Point(D_x, D_z); + + // vertex points filled in the clock-wise direction + points.push_back(make_tuple(id, A, B, C, D)); + + } + } + + return points; + +} + +// Create detector +static Ref_t create_detector(Detector& description, xml_h e, SensitiveDetector sens) { + static double tolerance = 0e0; + Layering layering (e); + xml_det_t x_det = e; + Material air = description.air(); + int det_id = x_det.id(); + string det_name = x_det.nameStr(); + xml_comp_t x_staves = x_det.staves(); + xml_comp_t x_dim = x_det.dimensions(); + int nsides = x_dim.numsides(); + + double inner_r = x_dim.rmin(); + double dphi = (2*M_PI/nsides); + double hphi = dphi/2; + double support_thickness = 0.0; + if(x_staves.hasChild("support")){ + support_thickness = getAttrOrDefault(x_staves.child(_U(support)), _U(thickness), 5.0 * cm); + } + double mod_z = layering.totalThickness() + support_thickness; + double outer_r = inner_r + mod_z; + double totThick = mod_z; + double offset = x_det.attr<double>(_Unicode(offset)); + DetElement sdet (det_name,det_id); + Volume motherVol = description.pickMotherVolume(sdet); + PolyhedraRegular hedra (nsides,inner_r,inner_r+totThick+tolerance*2e0,x_dim.z()); + Volume envelope (det_name,hedra,air); + PlacedVolume env_phv = motherVol.placeVolume(envelope,Transform3D(Translation3D(0,0,offset)*RotationZ(M_PI/nsides))); + + env_phv.addPhysVolID("system",det_id); + sdet.setPlacement(env_phv); + + DetElement stave_det("stave0",det_id); + double dx = 0.0; //mod_z / std::sin(dphi); // dx per layer + + // Compute the top and bottom face measurements. + double trd_x2 = (2 * std::tan(hphi) * outer_r - dx)/2 - tolerance; + double trd_x1 = (2 * std::tan(hphi) * inner_r + dx)/2 - tolerance; + double trd_y1 = x_dim.z()/2 - tolerance; + double trd_y2 = trd_y1; + double trd_z = mod_z/2 - tolerance; + + // Create the trapezoid for the stave. + Trapezoid trd(trd_x1, // Outer side, i.e. the "long" X side. + trd_x2, // Inner side, i.e. the "short" X side. + trd_y1, // Corresponds to subdetector (or module) Z. + trd_y2, // + trd_z); // Thickness, in Y for top stave, when rotated. + + Volume mod_vol("stave",trd,air); + double l_pos_z = -(layering.totalThickness() / 2) - support_thickness/2.0; + + //double trd_x2_support = trd_x1; + double trd_x1_support = (2 * std::tan(hphi) * outer_r - dx- support_thickness)/2 - tolerance; + + Solid support_frame_s; + // optional stave support + if(x_staves.hasChild("support")){ + xml_comp_t x_support = x_staves.child(_U(support)); + // is the support on the inside surface? + bool is_inside_support = getAttrOrDefault<bool>(x_support, _Unicode(inside), true); + // number of "beams" running the length of the stave. + int n_beams = getAttrOrDefault<int>(x_support, _Unicode(n_beams), 3); + double beam_thickness = support_thickness / 4.0; // maybe a parameter later... + trd_x1_support = (2 * std::tan(hphi) * (outer_r - support_thickness + beam_thickness)) / 2 - tolerance; + double grid_size = getAttrOrDefault(x_support, _Unicode(grid_size), 25.0 * cm); + double beam_width = 2.0 * trd_x1_support / (n_beams + 1); // quick hack to make some gap between T beams + + double cross_beam_thickness = support_thickness/4.0; + //double trd_x1_support = (2 * std::tan(hphi) * (inner_r + beam_thickness)) / 2 - tolerance; + double trd_x2_support = trd_x2; + + int n_cross_supports = std::floor((trd_y1-cross_beam_thickness)/grid_size); + + Box beam_vert_s(beam_thickness / 2.0 - tolerance, trd_y1, support_thickness / 2.0 - tolerance); + Box beam_hori_s(beam_width / 2.0 - tolerance, trd_y1, beam_thickness / 2.0 - tolerance); + UnionSolid T_beam_s(beam_vert_s, beam_hori_s, Position(0, 0, -support_thickness / 2.0 + beam_thickness / 2.0)); + + // cross supports + Trapezoid trd_support(trd_x1_support,trd_x2_support, + beam_thickness / 2.0 - tolerance, beam_thickness / 2.0 - tolerance, + support_thickness / 2.0 - tolerance - cross_beam_thickness/2.0); + UnionSolid support_array_start_s(T_beam_s,trd_support,Position(0,0,cross_beam_thickness/2.0)); + for (int isup = 0; isup < n_cross_supports; isup++) { + support_array_start_s = UnionSolid(support_array_start_s, trd_support, Position(0, -1.0 * isup * grid_size, cross_beam_thickness/2.0)); + support_array_start_s = UnionSolid(support_array_start_s, trd_support, Position(0, 1.0 * isup * grid_size, cross_beam_thickness/2.0)); + } + support_array_start_s = + UnionSolid(support_array_start_s, beam_hori_s, + Position(-1.8 * 0.5*(trd_x1+trd_x2_support) / n_beams, 0, -support_thickness / 2.0 + beam_thickness / 2.0)); + support_array_start_s = + UnionSolid(support_array_start_s, beam_hori_s, + Position(1.8 * 0.5*(trd_x1+trd_x2_support) / n_beams, 0, -support_thickness / 2.0 + beam_thickness / 2.0)); + support_array_start_s = + UnionSolid(support_array_start_s, beam_vert_s, Position(-1.8 * 0.5*(trd_x1+trd_x2_support) / n_beams, 0, 0)); + support_array_start_s = + UnionSolid(support_array_start_s, beam_vert_s, Position(1.8 * 0.5*(trd_x1+trd_x2_support) / n_beams, 0, 0)); + + support_frame_s = support_array_start_s; + + Material support_mat = description.material(x_support.materialStr()); + Volume support_vol("support_frame_v", support_frame_s, support_mat); + support_vol.setVisAttributes(description,x_support.visStr()); + + // figure out how to best place + //auto pv = mod_vol.placeVolume(support_vol, Position(0.0, 0.0, l_pos_z + support_thickness / 2.0)); + auto pv = mod_vol.placeVolume(support_vol, Position(0.0, 0.0, -l_pos_z - support_thickness / 2.0)); + } + //l_pos_z += support_thickness; + + sens.setType("calorimeter"); + { // ===== buildBarrelStave(description, sens, module_volume) ===== + // Parameters for computing the layer X dimension: + double stave_z = trd_y1; + double tan_hphi = std::tan(hphi); + double l_dim_x = trd_x1; // Starting X dimension for the layer. + + // Loop over the sets of layer elements in the detector. + int l_num = 1; + for(xml_coll_t li(x_det,_U(layer)); li; ++li) { + xml_comp_t x_layer = li; + int repeat = x_layer.repeat(); + // Loop over number of repeats for this layer. + for (int j=0; j<repeat; j++) { + string l_name = _toString(l_num,"layer%d"); + double l_thickness = layering.layer(l_num-1)->thickness(); // Layer's thickness. + + Position l_pos(0,0,l_pos_z+l_thickness/2); // Position of the layer. + double l_trd_x1 = l_dim_x - tolerance; + double l_trd_x2 = l_dim_x + l_thickness*tan_hphi - tolerance; + double l_trd_y1 = stave_z-tolerance; + double l_trd_y2 = l_trd_y1; + double l_trd_z = l_thickness/2-tolerance; + + Trapezoid l_trd(l_trd_x1,l_trd_x2,l_trd_y1,l_trd_y2,l_trd_z); + Volume l_vol(l_name,l_trd,air); + DetElement layer(stave_det, l_name, det_id); + + // Loop over the sublayers or slices for this layer. + int s_num = 1; + double s_pos_z = -(l_thickness / 2); + for(xml_coll_t si(x_layer,_U(slice)); si; ++si) { + xml_comp_t x_slice = si; + string s_name = _toString(s_num,"slice%d"); + double s_thick = x_slice.thickness(); + Volume s_vol(s_name); + DetElement slice(layer,s_name,det_id); + + double s_trd_x1 = l_dim_x + (s_pos_z+l_thickness/2)*tan_hphi - tolerance; + double s_trd_x2 = l_dim_x + (s_pos_z+l_thickness/2+s_thick)*tan_hphi - tolerance; + double s_trd_y1 = stave_z-tolerance; + double s_trd_y2 = s_trd_y1; + double s_trd_z = s_thick/2-tolerance; + + + Trapezoid s_trd(s_trd_x1, s_trd_x2, s_trd_y1, s_trd_y2, s_trd_z); + s_vol.setSolid(s_trd); + s_vol.setMaterial(description.material(x_slice.materialStr())); + + + if (x_slice.hasChild("fiber")) { + xml_comp_t x_fiber = x_slice.child(_Unicode(fiber)); + double f_radius = getAttrOrDefault(x_fiber, _U(radius), 0.1 * cm); + double f_spacing_x = getAttrOrDefault(x_fiber, _Unicode(spacing_x), 0.122 * cm); + double f_spacing_z = getAttrOrDefault(x_fiber, _Unicode(spacing_z), 0.134 * cm); + std::string f_id_grid = getAttrOrDefault(x_fiber, _Unicode(identifier_grid), "grid"); + std::string f_id_fiber = getAttrOrDefault(x_fiber, _Unicode(identifier_fiber), "fiber"); + + // Calculate fiber positions inside the slice + vector<Point> f_pos = fiberPositions(f_radius, f_spacing_x, f_spacing_z, s_trd_x1, s_thick-tolerance, hphi); + // Sort fiber IDs fo better organization + sort(f_pos.begin(), f_pos.end(), + [](const Point &p1, const Point &p2) { + if (p1.y() == p2.y()) { return p1.x() < p2.x(); } + return p1.y() < p2.y(); + }); + + Tube f_tube(0, f_radius, stave_z-tolerance); + + // Set up the readout grid for the fiber layers + // Trapezoid is divided into segments with equal dz and equal number of divisions in x + // Every segment is a polygon that can be attached later to the lightguide + // The grid size is assumed to be ~2x2 cm (starting values). This is to be larger than + // SiPM chip (for GlueX 13mmx13mm: 4x4 grid 3mmx3mm with 3600 50×50 μm pixels each) + // See, e.g., https://arxiv.org/abs/1801.03088 Fig. 2d + + // Calculate number of divisions + pair<int, int> grid_div = getNdivisions(s_trd_x1, s_thick-tolerance, 2.0*cm, 2.0*cm); + // Calculate polygonal grid coordinates (vertices) + vector<tuple<int, Point, Point, Point, Point>> grid_vtx = gridPoints(grid_div.first, grid_div.second, s_trd_x1, s_thick-tolerance, hphi); + + vector<int> f_id_count(grid_div.first*grid_div.second,0); + for (auto &p : f_pos) { + int f_grid_id = -1; + int f_id = -1; + // Check to which grid fiber belongs to + for (auto &poly_vtx : grid_vtx) { + auto [grid_id, vtx_a, vtx_b, vtx_c, vtx_d] = poly_vtx; + double poly_x[4] = {vtx_a.x(), vtx_b.x(), vtx_c.x(), vtx_d.x()}; + double poly_y[4] = {vtx_a.y(), vtx_b.y(), vtx_c.y(), vtx_d.y()}; + double f_xy[2] = {p.x(), p.y()}; + + TGeoPolygon poly(4); + poly.SetXY(poly_x,poly_y); + poly.FinishPolygon(); + + if(poly.Contains(f_xy)) { + f_grid_id = grid_id; + f_id = f_id_count[grid_id]; + f_id_count[grid_id]++; + } + } + + string f_name = "fiber" + to_string(f_grid_id) + "_" + to_string(f_id); + Volume f_vol(f_name, f_tube, description.material(x_fiber.materialStr())); + DetElement fiber(slice, f_name, det_id); + if ( x_fiber.isSensitive() ) { + f_vol.setSensitiveDetector(sens); + } + fiber.setAttributes(description,f_vol,x_fiber.regionStr(),x_fiber.limitsStr(),x_fiber.visStr()); + + // Fiber placement + Transform3D f_tr(RotationZYX(0,0,M_PI*0.5),Position(p.x(), 0 ,p.y())); + PlacedVolume fiber_phv = s_vol.placeVolume(f_vol, f_tr); + fiber_phv.addPhysVolID(f_id_grid, f_grid_id + 1).addPhysVolID(f_id_fiber, f_id + 1); + fiber.setPlacement(fiber_phv); + + } + } + + if ( x_slice.isSensitive() ) { + s_vol.setSensitiveDetector(sens); + } + + slice.setAttributes(description,s_vol,x_slice.regionStr(),x_slice.limitsStr(),x_slice.visStr()); + + // Slice placement. + PlacedVolume slice_phv = l_vol.placeVolume(s_vol,Position(0,0,s_pos_z+s_thick/2)); + slice_phv.addPhysVolID("slice", s_num); + slice.setPlacement(slice_phv); + // Increment Z position of slice. + s_pos_z += s_thick; + + // Increment slice number. + ++s_num; + } + + // Set region, limitset, and vis of layer. + layer.setAttributes(description,l_vol,x_layer.regionStr(),x_layer.limitsStr(),x_layer.visStr()); + + PlacedVolume layer_phv = mod_vol.placeVolume(l_vol,l_pos); + layer_phv.addPhysVolID("layer", l_num); + layer.setPlacement(layer_phv); + // Increment to next layer Z position. + double xcut = l_thickness * tan_hphi; + l_dim_x += xcut; + l_pos_z += l_thickness; + ++l_num; + } + } + } + + // Set stave visualization. + if ( x_staves ) { + mod_vol.setVisAttributes(description.visAttributes(x_staves.visStr())); + } + // Phi start for a stave. + double phi = M_PI / nsides; + double mod_x_off = dx / 2; // Stave X offset, derived from the dx. + double mod_y_off = inner_r + mod_z/2; // Stave Y offset + + // Create nsides staves. + for (int i = 0; i < nsides; i++, phi -= dphi) { // i is module number + // Compute the stave position + double m_pos_x = mod_x_off * std::cos(phi) - mod_y_off * std::sin(phi); + double m_pos_y = mod_x_off * std::sin(phi) + mod_y_off * std::cos(phi); + Transform3D tr(RotationZYX(0,phi,M_PI*0.5),Translation3D(-m_pos_x,-m_pos_y,0)); + PlacedVolume pv = envelope.placeVolume(mod_vol,tr); + pv.addPhysVolID("system",det_id); + pv.addPhysVolID("module",i+1); + DetElement sd = i==0 ? stave_det : stave_det.clone(_toString(i,"stave%d")); + sd.setPlacement(pv); + sdet.add(sd); + } + + // Set envelope volume attributes. + envelope.setAttributes(description,x_det.regionStr(),x_det.limitsStr(),x_det.visStr()); + return sdet; +} + +DECLARE_DETELEMENT(athena_EcalBarrelHybrid,create_detector)