Skip to content
GitLab
Explore
Sign in
Primary navigation
Search or go to…
Project
R
reconstruction_benchmarks
Manage
Activity
Members
Labels
Plan
Issues
Issue boards
Milestones
Wiki
Code
Merge requests
Repository
Branches
Commits
Tags
Repository graph
Compare revisions
Snippets
Build
Pipelines
Jobs
Pipeline schedules
Artifacts
Deploy
Releases
Package registry
Container Registry
Model registry
Operate
Environments
Terraform modules
Monitor
Incidents
Analyze
Value stream analytics
Contributor analytics
CI/CD analytics
Repository analytics
Model experiments
Help
Help
Support
GitLab documentation
Compare GitLab plans
Community forum
Contribute to GitLab
Provide feedback
Keyboard shortcuts
?
Snippets
Groups
Projects
Show more breadcrumbs
EIC
benchmarks
reconstruction_benchmarks
Merge requests
!128
add benchmark for pion0
Code
Review changes
Check out branch
Download
Patches
Plain diff
Merged
add benchmark for pion0
add_pi0_benchmark
into
master
Overview
0
Commits
8
Pipelines
0
Changes
1
Merged
Chao Peng
requested to merge
add_pi0_benchmark
into
master
3 years ago
Overview
0
Commits
8
Pipelines
0
Changes
1
Expand
0
0
Merge request reports
Viewing commit
a1b3797c
Prev
Next
Show latest version
1 file
+
72
−
0
Inline
Compare changes
Side-by-side
Inline
Show whitespace changes
Show one file at a time
a1b3797c
add a script to get layer ids
· a1b3797c
Chao Peng
authored
3 years ago
benchmarks/imaging_ecal/scripts/get_layerids.py
0 → 100644
+
136
−
0
Options
'''
A simple analysis script to extract some basic info of Monte-Carlo hits
'''
import
os
import
ROOT
import
pandas
as
pd
import
numpy
as
np
import
argparse
from
matplotlib
import
pyplot
as
plt
import
matplotlib.ticker
as
ticker
from
lxml
import
etree
as
ET
class
AthenaDecoder
:
def
__init__
(
self
,
compact
,
readout
):
self
.
readouts
=
self
.
getReadouts
(
compact
)
self
.
changeReadout
(
readout
)
def
changeReadout
(
self
,
readout
):
self
.
fieldsmap
=
self
.
decomposeIDs
(
self
.
readouts
[
readout
])
def
get
(
self
,
idvals
,
field
):
start
,
width
=
self
.
fieldsmap
[
field
]
if
width
>=
0
:
return
np
.
bitwise_and
(
np
.
right_shift
(
idvals
,
start
),
(
1
<<
width
)
-
1
)
# first bit is sign bit
else
:
width
=
abs
(
width
)
-
1
vals
=
np
.
bitwise_and
(
np
.
right_shift
(
idvals
,
start
),
(
1
<<
width
)
-
1
)
return
np
.
where
(
np
.
bitwise_and
(
np
.
right_shift
(
idvals
,
start
+
width
),
1
),
vals
-
(
1
<<
width
),
vals
)
def
decode
(
self
,
idvals
):
return
{
field
:
self
.
get
(
idvals
,
field
)
for
field
,
_
in
self
.
fieldsmap
.
items
()}
@staticmethod
def
getReadouts
(
path
):
res
=
dict
()
AthenaDecoder
.
__getReadoutsRecur
(
path
,
res
)
return
res
@staticmethod
def
__getReadoutsRecur
(
path
,
res
):
if
not
os
.
path
.
exists
(
path
):
print
(
'
Xml file {} not exist! Ignored it.
'
.
format
(
path
))
return
lccdd
=
ET
.
parse
(
path
).
getroot
()
readouts
=
lccdd
.
find
(
'
readouts
'
)
if
readouts
is
not
None
:
for
readout
in
readouts
.
getchildren
():
ids
=
readout
.
find
(
'
id
'
)
if
ids
is
not
None
:
res
[
readout
.
attrib
[
'
name
'
]]
=
ids
.
text
for
child
in
lccdd
.
getchildren
():
if
child
.
tag
==
'
include
'
:
root_dir
=
os
.
path
.
dirname
(
os
.
path
.
realpath
(
path
))
AthenaDecoder
.
__getReadoutsRecur
(
os
.
path
.
join
(
root_dir
,
child
.
attrib
[
'
ref
'
]),
res
)
@staticmethod
def
decomposeIDs
(
id_str
):
res
=
dict
()
curr_bit
=
0
for
field_bits
in
id_str
.
split
(
'
,
'
):
elements
=
field_bits
.
split
(
'
:
'
)
field_name
=
elements
[
0
]
bit_width
=
int
(
elements
[
-
1
])
if
len
(
elements
)
==
3
:
curr_bit
=
int
(
elements
[
1
])
res
[
field_name
]
=
(
curr_bit
,
bit_width
)
curr_bit
+=
abs
(
bit_width
)
return
res
# read from RDataFrame and flatten a given collection, return pandas dataframe
def
flatten_collection
(
rdf
,
collection
,
cols
=
None
):
if
not
cols
:
cols
=
[
str
(
c
)
for
c
in
rdf
.
GetColumnNames
()
if
str
(
c
).
startswith
(
'
{}.
'
.
format
(
collection
))]
else
:
cols
=
[
'
{}.{}
'
.
format
(
collection
,
c
)
for
c
in
cols
]
if
not
cols
:
print
(
'
cannot find any branch under collection {}
'
.
format
(
collection
))
return
pd
.
DataFrame
()
data
=
rdf
.
AsNumpy
(
cols
)
# flatten the data, add an event id to identify clusters from different events
evns
=
[]
for
i
,
vec
in
enumerate
(
data
[
cols
[
0
]]):
evns
+=
[
i
]
*
vec
.
size
()
for
n
,
vals
in
data
.
items
():
# make sure ints are not converted to floats
typename
=
vals
[
0
].
__class__
.
__name__
.
lower
()
dtype
=
np
.
int64
if
'
int
'
in
typename
or
'
long
'
in
typename
else
np
.
float64
# type safe creation
data
[
n
]
=
np
.
asarray
([
v
for
vec
in
vals
for
v
in
vec
],
dtype
=
dtype
)
# build data frame
dfp
=
pd
.
DataFrame
({
c
:
pd
.
Series
(
v
)
for
c
,
v
in
data
.
items
()})
dfp
.
loc
[:,
'
event
'
]
=
evns
return
dfp
if
__name__
==
'
__main__
'
:
parser
=
argparse
.
ArgumentParser
()
parser
.
add_argument
(
'
rec_file
'
,
help
=
'
Path to reconstruction output file.
'
)
parser
.
add_argument
(
'
-o
'
,
dest
=
'
outdir
'
,
default
=
'
.
'
,
help
=
'
Output directory.
'
)
parser
.
add_argument
(
'
-c
'
,
'
--compact
'
,
dest
=
'
compact
'
,
required
=
True
,
help
=
'
Top-level xml file of the detector description
'
)
parser
.
add_argument
(
'
--collection
'
,
dest
=
'
coll
'
,
required
=
True
,
help
=
'
Hits collection name in the reconstruction file
'
)
parser
.
add_argument
(
'
--readout
'
,
dest
=
'
readout
'
,
required
=
True
,
help
=
'
Readout name for the hits collection
'
)
args
=
parser
.
parse_args
()
# decoder
decoder
=
AthenaDecoder
(
args
.
compact
,
args
.
readout
)
# get hits
rdf_rec
=
ROOT
.
RDataFrame
(
'
events
'
,
args
.
rec_file
)
df
=
flatten_collection
(
rdf_rec
,
args
.
coll
)
df
.
rename
(
columns
=
{
c
:
c
.
replace
(
args
.
coll
+
'
.
'
,
''
)
for
c
in
df
.
columns
},
inplace
=
True
)
# initialize dd4hep detector
# import DDG4
# kernel = DDG4.Kernel()
# description = kernel.detectorDescription()
# kernel.loadGeometry("file:{}".format(args.compact))
# dd4hep_decoder = description.readout(args.readout).idSpec().decoder()
# lindex = dd4hep_decoder.index('x')
# get_layer_id = np.vectorize(lambda cid: dd4hep_decoder.get(cid, lindex))
# df.loc[:, 'layerID'] = get_layer_id(df['cellID'].astype(int).values)
# always terminate dd4hep kernel
# kernel.terminate()
# faster way to get layerids
df
.
loc
[:,
'
layerID
'
]
=
decoder
.
get
(
df
[
'
cellID
'
].
values
,
'
layer
'
)
df
.
loc
[:,
'
xID
'
]
=
decoder
.
get
(
df
[
'
cellID
'
].
values
,
'
x
'
)
print
(
df
[[
'
cellID
'
,
'
layerID
'
,
'
xID
'
,
'
position.x
'
,
'
position.y
'
,
'
position.z
'
,
'
energy
'
]])
Loading