diff --git a/benchmarks/imaging_shower_ML/scripts/draw_imaging_event3d.py b/benchmarks/imaging_shower_ML/scripts/draw_imaging_event3d.py index c5741ab7cea6b828f57662cc04e667be7782d1eb..8e685ef46d30ec12f0b44779721238d6ed4e2813 100644 --- a/benchmarks/imaging_shower_ML/scripts/draw_imaging_event3d.py +++ b/benchmarks/imaging_shower_ML/scripts/draw_imaging_event3d.py @@ -52,7 +52,7 @@ if __name__ == '__main__': parser.add_argument( '--eta-ngrid', type=int, dest='eta_ngrid', - default=100, + default=40, help='number of eta grids for drawing.') parser.add_argument( '--eta-grid', type=float, @@ -62,7 +62,7 @@ if __name__ == '__main__': parser.add_argument( '--phi-ngrid', type=int, dest='phi_ngrid', - default=100, + default=40, help='number of phi grids for drawing.') parser.add_argument( '--phi-grid', type=float, @@ -92,5 +92,17 @@ if __name__ == '__main__': rc, thetac, phic, r0c, etac = cartesian_to_polar(xc, yc, zc) r, theta, phi, rc, eta = cartesian_to_polar(*data[['position.x', 'position.y', 'position.z']].values.T) + dfg = pd.DataFrame(data=np.vstack((*data[['layer', 'energy']].values.T, eta, phi)).T, + columns=['layer', 'energy', 'eta', 'phi']) + eta_bins = np.arange(args.eta_ngrid + 1)*args.eta_grid + eta_bins = eta_bins - eta_bins[-1]/2. + etac + phi_bins = np.arange(args.phi_ngrid + 1)*args.phi_grid + phi_bins = phi_bins - phi_bins[-1]/2. + phic + dfg.loc[:, 'eta_bin'] = np.digitize(dfg['eta'], eta_bins) + dfg.loc[:, 'phi_bin'] = np.digitize(dfg['phi'], phi_bins) + print(dfg) + # eta = eta - etac + # phi = phi - phic + # determine eta and phi windows according to event (cluster) center