diff --git a/benchmarks/clustering/scripts/cluster_plots.py b/benchmarks/clustering/scripts/cluster_plots.py index 5210fe25cd5e2486344c011903b6710fbf4099ed..0b99c63774d1da0292924a822e580c9f1b80dc36 100644 --- a/benchmarks/clustering/scripts/cluster_plots.py +++ b/benchmarks/clustering/scripts/cluster_plots.py @@ -50,10 +50,10 @@ def flatten_collection(rdf, collection, cols=None): def thrown_particles_figure(rdf, save, mcbranch="MCParticles"): # define truth particle info - dft = flatten_collection(rdf, mcbranch, ['genStatus', 'pdgID', 'ps.x', 'ps.y', 'ps.z', 'mass']) + dft = flatten_collection(rdf, mcbranch, ['generatorStatus', 'PDG', 'momentum.x', 'momentum.y', 'momentum.z', 'mass']) dft.rename(columns={c: c.replace(mcbranch + '.', '') for c in dft.columns}, inplace=True) # select thrown particles - dft = dft[dft['genStatus'] == 1] + dft = dft[dft['generatorStatus'] == 1] # figure fig, axs = plt.subplots(2, 2, figsize=(16, 12), dpi=120) @@ -77,7 +77,7 @@ def thrown_particles_figure(rdf, save, mcbranch="MCParticles"): # calculate kinematics get_4vecs = np.vectorize(lambda x, y, z, m: ROOT.Math.PxPyPzMVector(x, y, z, m)) - fourvecs = get_4vecs(*dft[['ps.x', 'ps.y', 'ps.z', 'mass']].values.T) + fourvecs = get_4vecs(*dft[['momentum.x', 'momentum.y', 'momentum.z', 'mass']].values.T) dft.loc[:, 'p'] = [v.P() for v in fourvecs] dft.loc[:, 'eta'] = [v.Eta() for v in fourvecs] diff --git a/benchmarks/imaging_shower_ML/scripts/check_edep_dists.py b/benchmarks/imaging_shower_ML/scripts/check_edep_dists.py index c865af89310b70343a7ff5c6344d88a1d94f9fdb..f191942ac567ea25fcc22b91b2e5a959d70c4516 100644 --- a/benchmarks/imaging_shower_ML/scripts/check_edep_dists.py +++ b/benchmarks/imaging_shower_ML/scripts/check_edep_dists.py @@ -77,13 +77,13 @@ if __name__ == '__main__': rdf = ROOT.RDataFrame("events", args.file) mc_branch = args.truth_branch - dfm = flatten_collection(rdf, mc_branch, ['genStatus', 'pdgID', 'ps.x', 'ps.y', 'ps.z', 'mass']) + dfm = flatten_collection(rdf, mc_branch, ['generatorStatus', 'PDG', 'momentum.x', 'momentum.y', 'momentum.z', 'mass']) dfm.rename(columns={c: c.replace(mc_branch + '.', '') for c in dfm.columns}, inplace=True) # selete incident particles - dfm = dfm[dfm['genStatus'].isin([0, 1])] + dfm = dfm[dfm['generatorStatus'].isin([0, 1])] # NOTE: assumed single particles dfm = dfm.groupby('event').first() - # p, theta, phi, pT, eta = cartesian_to_polar(*dfm[['ps.x', 'ps.y', 'ps.z']].values.T) + # p, theta, phi, pT, eta = cartesian_to_polar(*dfm[['momentum.x', 'momentum.y', 'momentum.z']].values.T) if args.sim: df = flatten_collection(rdf, args.branch, ['energyDeposit']) diff --git a/benchmarks/imaging_shower_ML/scripts/prepare_tf_dataset.py b/benchmarks/imaging_shower_ML/scripts/prepare_tf_dataset.py index 88477d568a08d2491fcacfe3eb987abe845f5e58..75bfb05cd091521e515fdf56841fa4bbb1e49589 100644 --- a/benchmarks/imaging_shower_ML/scripts/prepare_tf_dataset.py +++ b/benchmarks/imaging_shower_ML/scripts/prepare_tf_dataset.py @@ -88,10 +88,10 @@ if __name__ == '__main__': dfm = flatten_collection(rdf, 'MCParticles', ['generatorStatus', 'PDG', 'momentum.x', 'momentum.y', 'momentum.z', 'mass']) dfm.rename(columns={c: c.replace('MCParticles.', '') for c in dfm.columns}, inplace=True) # selete incident particles - dfm = dfm[dfm['genStatus'].isin([0, 1])] + dfm = dfm[dfm['generatorStatus'].isin([0, 1])] # NOTE: assumed single particles dfm = dfm.groupby('event').first() - p, theta, phi, pT, eta = cartesian_to_polar(*dfm[['ps.x', 'ps.y', 'ps.z']].values.T) + p, theta, phi, pT, eta = cartesian_to_polar(*dfm[['momentum.x', 'momentum.y', 'momentum.z']].values.T) dfm.loc[:, 'p'] = p dfm.loc[:, 'theta'] = theta dfm.loc[:, 'phi'] = phi diff --git a/benchmarks/tracking/scripts/tracking_performance.py b/benchmarks/tracking/scripts/tracking_performance.py index d5e29954aa2e34858bae3de1ec609b78631e5c59..ca908b3baa1f48cec0f4047f45e8b8ba6ccdb244 100644 --- a/benchmarks/tracking/scripts/tracking_performance.py +++ b/benchmarks/tracking/scripts/tracking_performance.py @@ -49,10 +49,10 @@ def flatten_collection(rdf, collection, cols=None): def thrown_particles_figure(rdf, save, mcbranch="MCParticles"): # define truth particle info - dft = flatten_collection(rdf, mcbranch, ['genStatus', 'pdgID', 'ps.x', 'ps.y', 'ps.z', 'mass']) + dft = flatten_collection(rdf, mcbranch, ['generatorStatus', 'PDG', 'momentum.x', 'momentum.y', 'momentum.z', 'mass']) dft.rename(columns={c: c.replace(mcbranch + '.', '') for c in dft.columns}, inplace=True) # select thrown particles - dft = dft[dft['genStatus'] == 1] + dft = dft[dft['generatorStatus'] == 1] # figure fig, axs = plt.subplots(2, 2, figsize=(16, 12), dpi=120) @@ -78,7 +78,7 @@ def thrown_particles_figure(rdf, save, mcbranch="MCParticles"): # calculate kinematics get_4vecs = np.vectorize(lambda x, y, z, m: ROOT.Math.PxPyPzMVector(x, y, z, m)) - fourvecs = get_4vecs(*dft[['ps.x', 'ps.y', 'ps.z', 'mass']].values.T) + fourvecs = get_4vecs(*dft[['momentum.x', 'momentum.y', 'momentum.z', 'mass']].values.T) dft.loc[:, 'p'] = [v.P() for v in fourvecs] dft.loc[:, 'theta'] = [v.Theta() for v in fourvecs]