from Gaudi.Configuration import * from Configurables import ApplicationMgr, AuditorSvc, EICDataSvc, PodioOutput, GeoSvc from GaudiKernel import SystemOfUnits as units from GaudiKernel.SystemOfUnits import MeV, GeV, mm, cm, mrad import json detector_name = "athena" if "JUGGLER_DETECTOR" in os.environ : detector_name = str(os.environ["JUGGLER_DETECTOR"]) detector_path = "" if "DETECTOR_PATH" in os.environ : detector_path = str(os.environ["DETECTOR_PATH"]) compact_path = os.path.join(detector_path, detector_name) # RICH reconstruction qe_data = [(1.0, 0.25), (7.5, 0.25),] # CAL reconstruction # get sampling fractions from system environment variable ci_ecal_sf = float(os.environ.get("CI_ECAL_SAMP_FRAC", 0.253)) cb_hcal_sf = float(os.environ.get("CB_HCAL_SAMP_FRAC", 0.038)) ci_hcal_sf = float(os.environ.get("CI_HCAL_SAMP_FRAC", 0.025)) ce_hcal_sf = float(os.environ.get("CE_HCAL_SAMP_FRAC", 0.025)) # input arguments from calibration file with open('config/emcal_barrel_calibration.json') as f: calib_data = json.load(f)['electron'] print(calib_data) img_barrel_sf = float(calib_data['sampling_fraction_img']) scifi_barrel_sf = float(calib_data['sampling_fraction_scfi']) # input and output input_sims = [f.strip() for f in str.split(os.environ["JUGGLER_SIM_FILE"], ",") if f.strip()] output_rec = str(os.environ["JUGGLER_REC_FILE"]) n_events = int(os.environ["JUGGLER_N_EVENTS"]) # services services = [] # auditor service services.append(AuditorSvc("AuditorSvc", Auditors=['ChronoAuditor', 'MemStatAuditor'])) # geometry service services.append(GeoSvc("GeoSvc", detectors=["{}.xml".format(compact_path)], OutputLevel=WARNING)) # data service services.append(EICDataSvc("EventDataSvc", inputs=input_sims, OutputLevel=WARNING)) # juggler components from Configurables import PodioInput from Configurables import Jug__Base__InputCopier_dd4pod__Geant4ParticleCollection_dd4pod__Geant4ParticleCollection_ as MCCopier from Configurables import Jug__Base__InputCopier_dd4pod__CalorimeterHitCollection_dd4pod__CalorimeterHitCollection_ as CalCopier from Configurables import Jug__Base__InputCopier_dd4pod__TrackerHitCollection_dd4pod__TrackerHitCollection_ as TrkCopier from Configurables import Jug__Base__InputCopier_dd4pod__PhotoMultiplierHitCollection_dd4pod__PhotoMultiplierHitCollection_ as PMTCopier from Configurables import Jug__Base__MC2DummyParticle as MC2DummyParticle from Configurables import Jug__Digi__PhotoMultiplierDigi as PhotoMultiplierDigi from Configurables import Jug__Digi__CalorimeterHitDigi as CalHitDigi from Configurables import Jug__Digi__UFSDTrackerDigi as TrackerDigi from Configurables import Jug__Reco__TrackerHitReconstruction as TrackerHitReconstruction from Configurables import Jug__Reco__TrackingHitsCollector2 as TrackingHitsCollector from Configurables import Jug__Reco__TrackerSourceLinker as TrackerSourceLinker from Configurables import Jug__Reco__TrackerSourcesLinker as TrackerSourcesLinker #from Configurables import Jug__Reco__TrackingHitsSourceLinker as TrackingHitsSourceLinker from Configurables import Jug__Reco__TrackParamTruthInit as TrackParamTruthInit from Configurables import Jug__Reco__TrackParamClusterInit as TrackParamClusterInit from Configurables import Jug__Reco__TrackParamVertexClusterInit as TrackParamVertexClusterInit from Configurables import Jug__Reco__TrackFindingAlgorithm as TrackFindingAlgorithm from Configurables import Jug__Reco__ParticlesFromTrackFit as ParticlesFromTrackFit from Configurables import Jug__Reco__ParticlesWithTruthPID as ParticlesWithTruthPID from Configurables import Jug__Reco__CalorimeterHitReco as CalHitReco from Configurables import Jug__Reco__CalorimeterHitsMerger as CalHitsMerger from Configurables import Jug__Reco__CalorimeterIslandCluster as IslandCluster from Configurables import Jug__Reco__ImagingPixelReco as ImCalPixelReco from Configurables import Jug__Reco__ImagingTopoCluster as ImagingCluster from Configurables import Jug__Reco__ClusterRecoCoG as RecoCoG from Configurables import Jug__Reco__ImagingClusterReco as ImagingClusterReco from Configurables import Jug__Reco__PhotoMultiplierReco as PhotoMultiplierReco from Configurables import Jug__Reco__PhotoRingClusters as PhotoRingClusters from Configurables import Jug__Reco__EMCalReconstruction as EMCalReconstruction # branches needed from simulation root file sim_coll = [ "mcparticles", "EcalEndcapNHits", "EcalEndcapPHits", "EcalBarrelHits", "EcalBarrelScFiHits", "HcalBarrelHits", "HcalEndcapPHits", "HcalEndcapNHits", "TrackerEndcapHits", "TrackerBarrelHits", "GEMTrackerEndcapHits", "VertexBarrelHits", "VertexEndcapHits", "DRICHHits", "MRICHHits" ] # list of algorithms algorithms = [] # input podin = PodioInput("PodioReader", collections=sim_coll) algorithms.append(podin) ## copiers to get around input --> output copy bug. Note the "2" appended to the output collection. copier = MCCopier("MCCopier", inputCollection="mcparticles", outputCollection="mcparticles2") algorithms.append(copier) # Generated particles dummy = MC2DummyParticle("dummy", inputCollection="mcparticles", outputCollection="GeneratedParticles", outputRelations="GeneratedParticleRelations", smearing=0) algorithms.append(dummy) # Crystal Endcap Ecal ce_ecal_daq = dict( dynamicRangeADC=5.*units.GeV, capacityADC=32768, pedestalMean=400, pedestalSigma=3) ce_ecal_digi = CalHitDigi("ce_ecal_digi", inputHitCollection="EcalEndcapNHits", outputHitCollection="EcalEndcapNRawHits", energyResolutions=[0., 0.02, 0.], **ce_ecal_daq) algorithms.append(ce_ecal_digi) ce_ecal_reco = CalHitReco("ce_ecal_reco", inputHitCollection=ce_ecal_digi.outputHitCollection, outputHitCollection="EcalEndcapNRecHits", thresholdFactor=4, # 4 sigma cut on pedestal sigma readoutClass="EcalEndcapNHits", sectorField="sector", **ce_ecal_daq) algorithms.append(ce_ecal_reco) ce_ecal_cl = IslandCluster("ce_ecal_cl", inputHitCollection=ce_ecal_reco.outputHitCollection, outputProtoClusterCollection="EcalEndcapNProtoClusters", splitCluster=False, minClusterHitEdep=1.0*units.MeV, # discard low energy hits minClusterCenterEdep=30*units.MeV, sectorDist=5.0*units.cm, dimScaledLocalDistXY=[1.8, 1.8]) # dimension scaled dist is good for hybrid sectors with different module size algorithms.append(ce_ecal_cl) ce_ecal_clreco = RecoCoG("ce_ecal_clreco", inputHitCollection=ce_ecal_cl.inputHitCollection, inputProtoClusterCollection=ce_ecal_cl.outputProtoClusterCollection, outputClusterCollection="EcalEndcapNClusters", mcHits="EcalEndcapNHits", samplingFraction=0.998, # this accounts for a small fraction of leakage logWeightBase=4.6) algorithms.append(ce_ecal_clreco) # Endcap Sampling Ecal ci_ecal_daq = dict( dynamicRangeADC=50.*units.MeV, capacityADC=32768, pedestalMean=400, pedestalSigma=10) ci_ecal_digi = CalHitDigi("ci_ecal_digi", inputHitCollection="EcalEndcapPHits", outputHitCollection="EcalEndcapPRawHits", **ci_ecal_daq) algorithms.append(ci_ecal_digi) ci_ecal_reco = CalHitReco("ci_ecal_reco", inputHitCollection=ci_ecal_digi.outputHitCollection, outputHitCollection="EcalEndcapPRecHits", thresholdFactor=5.0, **ci_ecal_daq) algorithms.append(ci_ecal_reco) # merge hits in different layer (projection to local x-y plane) ci_ecal_merger = CalHitsMerger("ci_ecal_merger", inputHitCollection=ci_ecal_reco.outputHitCollection, outputHitCollection="EcalEndcapPRecMergedHits", fields=["fiber_x", "fiber_y"], fieldRefNumbers=[1, 1], # fields=["layer", "slice"], # fieldRefNumbers=[1, 0], readoutClass="EcalEndcapPHits") algorithms.append(ci_ecal_merger) ci_ecal_cl = IslandCluster("ci_ecal_cl", inputHitCollection=ci_ecal_merger.outputHitCollection, outputProtoClusterCollection="EcalEndcapPProtoClusters", splitCluster=False, minClusterCenterEdep=10.*units.MeV, localDistXY=[10*units.mm, 10*units.mm]) algorithms.append(ci_ecal_cl) ci_ecal_clreco = RecoCoG("ci_ecal_clreco", inputHitCollection=ci_ecal_cl.inputHitCollection, inputProtoClusterCollection=ci_ecal_cl.outputProtoClusterCollection, outputClusterCollection="EcalEndcapPClusters", mcHits="EcalEndcapPHits", logWeightBase=6.2, samplingFraction=ci_ecal_sf) algorithms.append(ci_ecal_clreco) # Central Barrel Ecal (Imaging Cal.) img_barrel_daq = dict( dynamicRangeADC=3*units.MeV, capacityADC=8192, pedestalMean=400, pedestalSigma=20) # about 6 keV img_barrel_digi = CalHitDigi("img_barrel_digi", inputHitCollection="EcalBarrelHits", outputHitCollection="EcalBarrelImagingRawHits", energyResolutions=[0., 0.02, 0.], # 2% flat resolution **img_barrel_daq) algorithms.append(img_barrel_digi) img_barrel_reco = ImCalPixelReco("img_barrel_reco", inputHitCollection=img_barrel_digi.outputHitCollection, outputHitCollection="EcalBarrelImagingRecHits", thresholdFactor=3, # about 20 keV readoutClass="EcalBarrelHits", # readout class layerField="layer", # field to get layer id sectorField="module", # field to get sector id **img_barrel_daq) algorithms.append(img_barrel_reco) img_barrel_cl = ImagingCluster("img_barrel_cl", inputHitCollection=img_barrel_reco.outputHitCollection, outputProtoClusterCollection="EcalBarrelImagingProtoClusters", localDistXY=[2.*units.mm, 2*units.mm], # same layer layerDistEtaPhi=[10*units.mrad, 10*units.mrad], # adjacent layer neighbourLayersRange=2, # id diff for adjacent layer sectorDist=3.*units.cm) # different sector algorithms.append(img_barrel_cl) img_barrel_clreco = ImagingClusterReco("img_barrel_clreco", samplingFraction=img_barrel_sf, inputHitCollection=img_barrel_cl.inputHitCollection, inputProtoClusterCollection=img_barrel_cl.outputProtoClusterCollection, outputClusterCollection="EcalBarrelImagingClusters", mcHits="EcalBarrelHits", outputLayerCollection="EcalBarrelImagingLayers") algorithms.append(img_barrel_clreco) # Central ECAL SciFi scfi_barrel_daq = dict( dynamicRangeADC=50.*MeV, capacityADC=32768, pedestalMean=400, pedestalSigma=10) scfi_barrel_digi = CalHitDigi("scfi_barrel_digi", inputHitCollection="EcalBarrelScFiHits", outputHitCollection="EcalBarrelScFiRawHits", **scfi_barrel_daq) algorithms.append(scfi_barrel_digi) scfi_barrel_reco = CalHitReco("scfi_barrel_reco", inputHitCollection=scfi_barrel_digi.outputHitCollection, outputHitCollection="EcalBarrelScFiRecHits", thresholdFactor=5.0, readoutClass="EcalBarrelScFiHits", layerField="layer", sectorField="module", localDetFields=["system", "module"], # use local coordinates in each module (stave) **scfi_barrel_daq) algorithms.append(scfi_barrel_reco) # merge hits in different layer (projection to local x-y plane) scfi_barrel_merger = CalHitsMerger("scfi_barrel_merger", inputHitCollection=scfi_barrel_reco.outputHitCollection, outputHitCollection="EcalBarrelScFiMergedHits", fields=["fiber"], fieldRefNumbers=[1], readoutClass="EcalBarrelScFiHits") algorithms.append(scfi_barrel_merger) scfi_barrel_cl = IslandCluster("scfi_barrel_cl", inputHitCollection=scfi_barrel_merger.outputHitCollection, outputProtoClusterCollection="EcalBarrelScFiProtoClusters", splitCluster=False, minClusterCenterEdep=10.*MeV, localDistXZ=[30*mm, 30*mm]) algorithms.append(scfi_barrel_cl) scfi_barrel_clreco = RecoCoG("scfi_barrel_clreco", inputHitCollection=scfi_barrel_cl.inputHitCollection, inputProtoClusterCollection=scfi_barrel_cl.outputProtoClusterCollection, outputClusterCollection="EcalBarrelScFiClusters", mcHits="EcalBarrelScFiHits", logWeightBase=6.2, samplingFraction= scifi_barrel_sf) algorithms.append(scfi_barrel_clreco) # Central Barrel Hcal cb_hcal_daq = dict( dynamicRangeADC=50.*units.MeV, capacityADC=32768, pedestalMean=400, pedestalSigma=10) cb_hcal_digi = CalHitDigi("cb_hcal_digi", inputHitCollection="HcalBarrelHits", outputHitCollection="HcalBarrelRawHits", **cb_hcal_daq) algorithms.append(cb_hcal_digi) cb_hcal_reco = CalHitReco("cb_hcal_reco", inputHitCollection=cb_hcal_digi.outputHitCollection, outputHitCollection="HcalBarrelRecHits", thresholdFactor=5.0, readoutClass="HcalBarrelHits", layerField="layer", sectorField="module", **cb_hcal_daq) algorithms.append(cb_hcal_reco) cb_hcal_merger = CalHitsMerger("cb_hcal_merger", inputHitCollection=cb_hcal_reco.outputHitCollection, outputHitCollection="HcalBarrelMergedHits", readoutClass="HcalBarrelHits", fields=["layer", "slice"], fieldRefNumbers=[1, 0]) algorithms.append(cb_hcal_merger) cb_hcal_cl = IslandCluster("cb_hcal_cl", inputHitCollection=cb_hcal_merger.outputHitCollection, outputProtoClusterCollection="HcalBarrelProtoClusters", splitCluster=False, minClusterCenterEdep=30.*units.MeV, localDistXY=[15.*units.cm, 15.*units.cm]) algorithms.append(cb_hcal_cl) cb_hcal_clreco = RecoCoG("cb_hcal_clreco", inputHitCollection=cb_hcal_cl.inputHitCollection, inputProtoClusterCollection=cb_hcal_cl.outputProtoClusterCollection, outputClusterCollection="HcalBarrelClusters", mcHits="HcalBarrelHits", logWeightBase=6.2, samplingFraction=cb_hcal_sf) algorithms.append(cb_hcal_clreco) # Hcal Hadron Endcap ci_hcal_daq = dict( dynamicRangeADC=50.*units.MeV, capacityADC=32768, pedestalMean=400, pedestalSigma=10) ci_hcal_digi = CalHitDigi("ci_hcal_digi", inputHitCollection="HcalEndcapPHits", outputHitCollection="HcalEndcapPRawHits", **ci_hcal_daq) algorithms.append(ci_hcal_digi) ci_hcal_reco = CalHitReco("ci_hcal_reco", inputHitCollection=ci_hcal_digi.outputHitCollection, outputHitCollection="HcalEndcapPRecHits", thresholdFactor=5.0, **ci_hcal_daq) algorithms.append(ci_hcal_reco) ci_hcal_merger = CalHitsMerger("ci_hcal_merger", inputHitCollection=ci_hcal_reco.outputHitCollection, outputHitCollection="HcalEndcapPMergedHits", readoutClass="HcalEndcapPHits", fields=["layer", "slice"], fieldRefNumbers=[1, 0]) algorithms.append(ci_hcal_merger) ci_hcal_cl = IslandCluster("ci_hcal_cl", inputHitCollection=ci_hcal_merger.outputHitCollection, outputProtoClusterCollection="HcalEndcapPProtoClusters", splitCluster=False, minClusterCenterEdep=30.*units.MeV, localDistXY=[15.*units.cm, 15.*units.cm]) algorithms.append(ci_hcal_cl) ci_hcal_clreco = RecoCoG("ci_hcal_clreco", inputHitCollection=ci_hcal_cl.inputHitCollection, inputProtoClusterCollection=ci_hcal_cl.outputProtoClusterCollection, outputClusterCollection="HcalEndcapPClusters", mcHits="HcalEndcapPHits", logWeightBase=6.2, samplingFraction=ci_hcal_sf) algorithms.append(ci_hcal_clreco) # Hcal Electron Endcap ce_hcal_daq = dict( dynamicRangeADC=50.*units.MeV, capacityADC=32768, pedestalMean=400, pedestalSigma=10) ce_hcal_digi = CalHitDigi("ce_hcal_digi", inputHitCollection="HcalEndcapNHits", outputHitCollection="HcalEndcapNRawHits", **ce_hcal_daq) algorithms.append(ce_hcal_digi) ce_hcal_reco = CalHitReco("ce_hcal_reco", inputHitCollection=ce_hcal_digi.outputHitCollection, outputHitCollection="HcalEndcapNRecHits", thresholdFactor=5.0, **ce_hcal_daq) algorithms.append(ce_hcal_reco) ce_hcal_merger = CalHitsMerger("ce_hcal_merger", inputHitCollection=ce_hcal_reco.outputHitCollection, outputHitCollection="HcalEndcapNMergedHits", readoutClass="HcalEndcapNHits", fields=["layer", "slice"], fieldRefNumbers=[1, 0]) algorithms.append(ce_hcal_merger) ce_hcal_cl = IslandCluster("ce_hcal_cl", inputHitCollection=ce_hcal_merger.outputHitCollection, outputProtoClusterCollection="HcalEndcapNProtoClusters", splitCluster=False, minClusterCenterEdep=30.*units.MeV, localDistXY=[15.*units.cm, 15.*units.cm]) algorithms.append(ce_hcal_cl) ce_hcal_clreco = RecoCoG("ce_hcal_clreco", inputHitCollection=ce_hcal_cl.inputHitCollection, inputProtoClusterCollection=ce_hcal_cl.outputProtoClusterCollection, outputClusterCollection="HcalEndcapNClusters", mcHits="HcalEndcapNHits", logWeightBase=6.2, samplingFraction=ce_hcal_sf) algorithms.append(ce_hcal_clreco) # Tracking trk_b_digi = TrackerDigi("trk_b_digi", inputHitCollection="TrackerBarrelHits", outputHitCollection="TrackerBarrelRawHits", timeResolution=8) algorithms.append(trk_b_digi) trk_ec_digi = TrackerDigi("trk_ec_digi", inputHitCollection="TrackerEndcapHits", outputHitCollection="TrackerEndcapRawHits", timeResolution=8) algorithms.append(trk_ec_digi) vtx_b_digi = TrackerDigi("vtx_b_digi", inputHitCollection="VertexBarrelHits", outputHitCollection="VertexBarrelRawHits", timeResolution=8) algorithms.append(vtx_b_digi) vtx_ec_digi = TrackerDigi("vtx_ec_digi", inputHitCollection="VertexEndcapHits", outputHitCollection="VertexEndcapRawHits", timeResolution=8) algorithms.append(vtx_ec_digi) gem_ec_digi = TrackerDigi("gem_ec_digi", inputHitCollection="GEMTrackerEndcapHits", outputHitCollection="GEMTrackerEndcapRawHits", timeResolution=10) algorithms.append(gem_ec_digi) # Tracker and vertex reconstruction trk_b_reco = TrackerHitReconstruction("trk_b_reco", inputHitCollection = trk_b_digi.outputHitCollection, outputHitCollection="TrackerBarrelRecHits") algorithms.append(trk_b_reco) trk_ec_reco = TrackerHitReconstruction("trk_ec_reco", inputHitCollection = trk_ec_digi.outputHitCollection, outputHitCollection="TrackerEndcapRecHits") algorithms.append(trk_ec_reco) vtx_b_reco = TrackerHitReconstruction("vtx_b_reco", inputHitCollection = vtx_b_digi.outputHitCollection, outputHitCollection="VertexBarrelRecHits") algorithms.append(vtx_b_reco) vtx_ec_reco = TrackerHitReconstruction("vtx_ec_reco", inputHitCollection = vtx_ec_digi.outputHitCollection, outputHitCollection="VertexEndcapRecHits") algorithms.append(vtx_ec_reco) gem_ec_reco = TrackerHitReconstruction("gem_ec_reco", inputHitCollection=gem_ec_digi.outputHitCollection, outputHitCollection="GEMTrackerEndcapRecHits") algorithms.append(gem_ec_reco) # Tracking hit collector trk_hit_col = TrackingHitsCollector("trk_hit_col", inputTrackingHits=[ str(trk_b_reco.outputHitCollection), str(trk_ec_reco.outputHitCollection), str(vtx_b_reco.outputHitCollection), str(vtx_ec_reco.outputHitCollection), str(gem_ec_reco.outputHitCollection) ], trackingHits="trackingHits") algorithms.append(trk_hit_col) # Hit Source linker sourcelinker = TrackerSourceLinker("trk_srcslnkr", inputHitCollection = trk_hit_col.trackingHits, outputSourceLinks = "TrackSourceLinks", outputMeasurements = "TrackMeasurements") algorithms.append(sourcelinker) ## Track param init truth_trk_init = TrackParamTruthInit("truth_trk_init", inputMCParticles="mcparticles", outputInitialTrackParameters="InitTrackParams") algorithms.append(truth_trk_init) # Tracking algorithms trk_find_alg = TrackFindingAlgorithm("trk_find_alg", inputSourceLinks = sourcelinker.outputSourceLinks, inputMeasurements = sourcelinker.outputMeasurements, inputInitialTrackParameters = truth_trk_init.outputInitialTrackParameters, outputTrajectories = "trajectories") algorithms.append(trk_find_alg) parts_from_fit = ParticlesFromTrackFit("parts_from_fit", inputTrajectories = trk_find_alg.outputTrajectories, outputParticles = "outputParticles", outputTrackParameters = "outputTrackParameters") algorithms.append(parts_from_fit) # Event building parts_with_truth_pid = ParticlesWithTruthPID("parts_with_truth_pid", inputMCParticles = "mcparticles", inputTrackParameters = parts_from_fit.outputTrackParameters, outputParticles = "ReconstructedParticles", outputRelations = "ReconstructedParticleRelations") algorithms.append(parts_with_truth_pid) # DRICH drich_digi = PhotoMultiplierDigi("drich_digi", inputHitCollection="DRICHHits", outputHitCollection="DRICHRawHits", quantumEfficiency=[(a*units.eV, b) for a, b in qe_data]) algorithms.append(drich_digi) drich_reco = PhotoMultiplierReco("drich_reco", inputHitCollection=drich_digi.outputHitCollection, outputHitCollection="DRICHRecHits") algorithms.append(drich_reco) # FIXME #drich_cluster = PhotoRingClusters("drich_cluster", # inputHitCollection=pmtreco.outputHitCollection, # #inputTrackCollection="ReconstructedParticles", # outputClusterCollection="ForwardRICHClusters") # MRICH mrich_digi = PhotoMultiplierDigi("mrich_digi", inputHitCollection="MRICHHits", outputHitCollection="MRICHRawHits", quantumEfficiency=[(a*units.eV, b) for a, b in qe_data]) algorithms.append(mrich_digi) mrich_reco = PhotoMultiplierReco("mrich_reco", inputHitCollection=mrich_digi.outputHitCollection, outputHitCollection="MRICHRecHits") algorithms.append(mrich_reco) # FIXME #mrich_cluster = PhotoRingClusters("drich_cluster", # inputHitCollection=pmtreco.outputHitCollection, # #inputTrackCollection="ReconstructedParticles", # outputClusterCollection="ForwardRICHClusters") # Output podout = PodioOutput("out", filename=output_rec) podout.outputCommands = [ "keep *", "drop *Hits", "keep *Layers", "keep *Clusters", "drop *ProtoClusters", "drop outputParticles", "drop InitTrackParams", ] + [ "drop " + c for c in sim_coll] algorithms.append(podout) ApplicationMgr( TopAlg = algorithms, EvtSel = 'NONE', EvtMax = n_events, ExtSvc = services, OutputLevel = WARNING, AuditAlgorithms = True )