diff --git a/.gitlab-ci.yml b/.gitlab-ci.yml
index e38469abdfac48d654d8770793167866df3159a3..49ecec331ea4c095132634b4f229289f5e33429e 100644
--- a/.gitlab-ci.yml
+++ b/.gitlab-ci.yml
@@ -120,9 +120,6 @@ include:
   - local: 'benchmarks/dis/config.yml'
     #- local: 'benchmarks/dvmp/config.yml'
   - local: 'benchmarks/dvcs/config.yml'
-  - local: 'benchmarks/lambda/config.yml'
-  - local: 'benchmarks/neutron/config.yml'
-  - local: 'benchmarks/sigma/config.yml'
   - local: 'benchmarks/tcs/config.yml'
   - local: 'benchmarks/u_omega/config.yml'
   - local: 'benchmarks/single/config.yml'
@@ -135,9 +132,6 @@ summary:
     - "demp:results"
     - "dis:results"
     - "dvcs:results"
-    - "lambda:results"
-    - "neutron:results"
-    - "sigma:results"
     - "tcs:results"
     - "u_omega:results"
     - "single:results"
diff --git a/Snakefile b/Snakefile
index 10998fe929face1020c51e955e0cd5ea5970e1a8..73b03c2b57ca94f25bb0d80d54cf8748a32d3b8f 100644
--- a/Snakefile
+++ b/Snakefile
@@ -42,7 +42,4 @@ ddsim \
 
 include: "benchmarks/diffractive_vm/Snakefile"
 include: "benchmarks/dis/Snakefile"
-include: "benchmarks/lambda/Snakefile"
-include: "benchmarks/neutron/Snakefile"
 include: "benchmarks/demp/Snakefile"
-include: "benchmarks/sigma/Snakefile"
\ No newline at end of file
diff --git a/benchmarks/lambda/Snakefile b/benchmarks/lambda/Snakefile
deleted file mode 100644
index 0793621db7d0bcbbab541ec8f372e514be5658e4..0000000000000000000000000000000000000000
--- a/benchmarks/lambda/Snakefile
+++ /dev/null
@@ -1,63 +0,0 @@
-rule lambda_generate:
-	input:
-                script="benchmarks/lambda/analysis/gen_lambda_decay.cxx",
-	params:
-		NEVENTS_GEN=100000,
-	output:
-		GEN_FILE="sim_output/lambda/lambda_decay_{P}GeV.hepmc"
-	shell:
-		"""
-root -l -b -q '{input.script}({params.NEVENTS_GEN},0,"{output.GEN_FILE}",{wildcards.P},{wildcards.P})'
-"""
-
-rule lambda_simulate:
-	input:
-		GEN_FILE="sim_output/lambda/lambda_decay_{P}GeV.hepmc"
-	params:
-		PHYSICS_LIST="FTFP_BERT"
-	output:
-		SIM_FILE="sim_output/lambda/{DETECTOR_CONFIG}_sim_lambda_dec_{P}GeV.edm4hep.root"
-	shell:
-		"""
-if [[ {wildcards.P} -gt 225 ]]; then
-   NEVENTS_SIM=1000
-else
-   NEVENTS_SIM=1000
-fi
-# Running simulation
-npsim \
-   --compactFile $DETECTOR_PATH/{wildcards.DETECTOR_CONFIG}.xml \
-   --numberOfEvents $NEVENTS_SIM \
-   --physicsList {params.PHYSICS_LIST} \
-   --inputFiles {input.GEN_FILE} \
-   --outputFile {output.SIM_FILE}
-"""
-
-rule lambda_recon:
-        input:
-                SIM_FILE="sim_output/lambda/{DETECTOR_CONFIG}_sim_lambda_dec_{P}GeV.edm4hep.root"
-        output:
-                REC_FILE="sim_output/lambda/{DETECTOR_CONFIG}_rec_lambda_dec_{P}GeV.edm4hep.root"
-        shell:
-                """
-if [[ {wildcards.P} -gt 225 ]]; then
-   NEVENTS_REC=1000
-else
-   NEVENTS_REC=1000
-fi
-eicrecon {input.SIM_FILE} -Ppodio:output_file={output.REC_FILE} -Pdd4hep:xml_files=$DETECTOR_PATH/{wildcards.DETECTOR_CONFIG}.xml -Ppodio:output_collections=MCParticles,HcalFarForwardZDCClusters,HcalFarForwardZDCRecHits,HcalFarForwardZDCSubcellHits  -Pjana:nevents=$NEVENTS_REC
-"""
-
-rule lambda_analysis:
-	input:
-                expand("sim_output/lambda/{DETECTOR_CONFIG}_rec_lambda_dec_{P}GeV.edm4hep.root",
-		    P=[100, 125, 150,175, 200, 225, 250, 275],
-		    DETECTOR_CONFIG=["{DETECTOR_CONFIG}"]),
-                script="benchmarks/lambda/analysis/lambda_plots.py",
-	output:
-		results_dir=directory("results/{DETECTOR_CONFIG}/lambda"),
-	shell:
-		"""
-mkdir -p {output.results_dir}
-python {input.script} {output.results_dir}
-"""
diff --git a/benchmarks/lambda/analysis/gen_lambda_decay.cxx b/benchmarks/lambda/analysis/gen_lambda_decay.cxx
deleted file mode 100644
index 567eda5bcf5497f1b64596745ef5820e7a54eff9..0000000000000000000000000000000000000000
--- a/benchmarks/lambda/analysis/gen_lambda_decay.cxx
+++ /dev/null
@@ -1,239 +0,0 @@
-#include "HepMC3/GenEvent.h"
-#include "HepMC3/ReaderAscii.h"
-#include "HepMC3/WriterAscii.h"
-#include "HepMC3/Print.h"
-
-#include "TRandom3.h"
-#include "TVector3.h"
-
-#include <TDatabasePDG.h>
-#include <TParticlePDG.h>
-
-#include <iostream>
-#include <random>
-#include <TMath.h>
-
-using namespace HepMC3;
-
-std::tuple<double, int, double> GetParticleInfo(TDatabasePDG* pdg, TString particle_name)
-{
-  TParticlePDG *particle = pdg->GetParticle(particle_name);
-  const double mass = particle->Mass();
-  const int pdgID = particle->PdgCode();
-  const double lifetime = particle->Lifetime();
-  return std::make_tuple(mass, pdgID, lifetime);
-}
-// Calculates the decay length of a particle. Samples from an exponential decay.
-double GetDecayLength(TRandom3* r1, double lifetime, double mass, double momentum_magnitude)
-{ 
-  double c_speed = TMath::C() * 1000.; // speed of light im mm/sec
-  double average_decay_length = (momentum_magnitude/mass) * lifetime * c_speed;
-  return r1->Exp(average_decay_length);
-}
-
-// Generate single lambda mesons and decay them to a neutron + 2 photons
-void gen_lambda_decay(int n_events = 100000, UInt_t seed = 0, char* out_fname = "lambda_decay.hepmc",
-		      double p_min = 100., // in GeV/c
-		      double p_max = 275.) // in GeV/c
-{
-
-  const double theta_min = 0.0; // in mRad
-  const double theta_max = 3.0; // in mRad
-  //const double p_min = 100.; // in GeV/c
-  //const double p_max = 275.; // in GeV/c
-
-  WriterAscii hepmc_output(out_fname);
-  int events_parsed = 0;
-  GenEvent evt(Units::GEV, Units::MM);
-
-  // Random number generator
-  TRandom3 *r1 = new TRandom3(seed); //Default = 0, which uses clock to set seed
-  cout<<"Random number seed is "<<r1->GetSeed()<<"!"<<endl;
-
-  // Getting generated particle information
-  TDatabasePDG *pdg = new TDatabasePDG();
-  
-  auto lambda_info = GetParticleInfo(pdg, "Lambda0");
-  double lambda_mass = std::get<0>(lambda_info);
-  int lambda_pdgID = std::get<1>(lambda_info);
-  double lambda_lifetime = std::get<2>(lambda_info);
-
-  auto neutron_info = GetParticleInfo(pdg, "neutron");
-  double neutron_mass = std::get<0>(neutron_info);
-  int neutron_pdgID = std::get<1>(neutron_info);
-
-  auto pi0_info = GetParticleInfo(pdg, "pi0");
-  double pi0_mass = std::get<0>(pi0_info);
-  int pi0_pdgID = std::get<1>(pi0_info);
-  double pi0_lifetime = std::get<2>(pi0_info);
-
-  auto photon_info = GetParticleInfo(pdg, "gamma");
-  double photon_mass = std::get<0>(photon_info);
-  int photon_pdgID = std::get<1>(photon_info);
-
-  for (events_parsed = 0; events_parsed < n_events; events_parsed++) {
-
-    //Set the event number
-    evt.set_event_number(events_parsed);
-
-    // FourVector(px,py,pz,e,pdgid,status)
-    // type 4 is beam
-    // pdgid 11 - electron
-    // pdgid 2212 - proton
-    GenParticlePtr p1 =
-        std::make_shared<GenParticle>(FourVector(0.0, 0.0, 10.0, 10.0), 11, 4);
-    GenParticlePtr p2 = std::make_shared<GenParticle>(
-        FourVector(0.0, 0.0, 0.0, 0.938), 2212, 4);
-
-    // Define momentum with respect to EIC proton beam direction
-    Double_t lambda_p     = r1->Uniform(p_min, p_max);
-    Double_t lambda_phi   = r1->Uniform(0.0, 2.0 * M_PI);
-    Double_t lambda_th    = r1->Uniform(theta_min/1000., theta_max/1000.); // Divide by 1000 for radians
-    Double_t lambda_px    = lambda_p * TMath::Cos(lambda_phi) * TMath::Sin(lambda_th);
-    Double_t lambda_py    = lambda_p * TMath::Sin(lambda_phi) * TMath::Sin(lambda_th);
-    Double_t lambda_pz    = lambda_p * TMath::Cos(lambda_th);
-    Double_t lambda_E     = TMath::Sqrt(lambda_p*lambda_p + lambda_mass*lambda_mass);
-
-    // Rotate to lab coordinate system
-    TVector3 lambda_pvec(lambda_px, lambda_py, lambda_pz); 
-    double cross_angle = -25./1000.; // in Rad
-    TVector3 pbeam_dir(TMath::Sin(cross_angle), 0, TMath::Cos(cross_angle)); //proton beam direction
-    lambda_pvec.RotateY(cross_angle); // Theta is returned positive, beam in negative X
-
-    // type 2 is state that will decay
-    GenParticlePtr p_lambda = std::make_shared<GenParticle>(
-        FourVector(lambda_pvec.X(), lambda_pvec.Y(), lambda_pvec.Z(), lambda_E), lambda_pdgID, 2 );
-    
-    // Generating lambda particle, will be generated at origin
-    // Must have input electron + proton for vertex
-    GenVertexPtr lambda_initial_vertex = std::make_shared<GenVertex>();
-    lambda_initial_vertex->add_particle_in(p1);
-    lambda_initial_vertex->add_particle_in(p2);
-    lambda_initial_vertex->add_particle_out(p_lambda);
-    evt.add_vertex(lambda_initial_vertex);
-
-    // Generate neutron + pi0 in lambda rest frame
-    TLorentzVector neutron_rest, pi0_rest;
-
-    // Generating uniformly along a sphere
-    double cost_neutron_rest = r1->Uniform(-1,1);
-    double th_neutron_rest = TMath::ACos(cost_neutron_rest);
-    double sint_neutron_rest = TMath::Sin(th_neutron_rest);
-
-    double phi_neutron_rest = r1->Uniform(-1.*TMath::Pi(),1.*TMath::Pi());
-    double cosp_neutron_rest = TMath::Cos(phi_neutron_rest);
-    double sinp_neutron_rest = TMath::Sin(phi_neutron_rest);
-
-    // Calculate energy of each particle in the lambda rest frame
-    // See problem 3.19 in Introduction to Elementary Particles, 2nd edition by D. Griffiths
-    double E_neutron_rest = (-TMath::Power(pi0_mass, 2.) + TMath::Power(lambda_mass, 2.) + TMath::Power(neutron_mass, 2.) ) / (2. * lambda_mass) ;
-    double E_pi0_rest = (-TMath::Power(neutron_mass, 2.) + TMath::Power(lambda_mass, 2.) + TMath::Power(pi0_mass, 2.) ) / (2. * lambda_mass) ;
-
-    // Both particles will have the same momentum, so just use neutron variables
-    double momentum_rest = TMath::Sqrt( E_neutron_rest*E_neutron_rest - neutron_mass*neutron_mass );
-
-    neutron_rest.SetE(E_neutron_rest);
-    neutron_rest.SetPx( momentum_rest * sint_neutron_rest * cosp_neutron_rest );
-    neutron_rest.SetPy( momentum_rest * sint_neutron_rest * sinp_neutron_rest );
-    neutron_rest.SetPz( momentum_rest * cost_neutron_rest );
-
-    pi0_rest.SetE(E_pi0_rest);
-    pi0_rest.SetPx( -neutron_rest.Px() );
-    pi0_rest.SetPy( -neutron_rest.Py() );
-    pi0_rest.SetPz( -neutron_rest.Pz() );
-
-    // Boost neutron & pion to lab frame
-    TLorentzVector lambda_lab(lambda_pvec.X(), lambda_pvec.Y(), lambda_pvec.Z(), lambda_E);
-    TVector3 lambda_boost = lambda_lab.BoostVector();
-    TLorentzVector neutron_lab, pi0_lab;  
-    neutron_lab = neutron_rest; 
-    neutron_lab.Boost(lambda_boost);
-    pi0_lab = pi0_rest;
-    pi0_lab.Boost(lambda_boost);
-
-    // Calculating position for lambda decay
-    TVector3 lambda_unit = lambda_lab.Vect().Unit();
-    double lambda_decay_length = GetDecayLength(r1, lambda_lifetime, lambda_mass, lambda_lab.P());
-    TVector3 lambda_decay_position = lambda_unit * lambda_decay_length;
-    double lambda_decay_time = lambda_decay_length / lambda_lab.Beta() ; // Decay time in lab frame in length units (mm)
-  
-    // Generating vertex for lambda decay
-    GenParticlePtr p_neutron = std::make_shared<GenParticle>(
-      FourVector(neutron_lab.Px(), neutron_lab.Py(), neutron_lab.Pz(), neutron_lab.E()), neutron_pdgID, 1 );
-
-    GenParticlePtr p_pi0 = std::make_shared<GenParticle>(
-      FourVector(pi0_lab.Px(), pi0_lab.Py(), pi0_lab.Pz(), pi0_lab.E()), pi0_pdgID, 2 );
-
-    GenVertexPtr v_lambda_decay = std::make_shared<GenVertex>(FourVector(lambda_decay_position.X(), lambda_decay_position.Y(), lambda_decay_position.Z(), lambda_decay_time));
-    v_lambda_decay->add_particle_in(p_lambda);
-    v_lambda_decay->add_particle_out(p_neutron);
-    v_lambda_decay->add_particle_out(p_pi0);
-
-    evt.add_vertex(v_lambda_decay);
-
-    // Generate two photons from pi0 decay
-    TLorentzVector gamma1_rest, gamma2_rest;
-
-    // Generating uniformly along a sphere
-    double cost_gamma1_rest = r1->Uniform(-1,1);
-    double th_gamma1_rest = TMath::ACos(cost_gamma1_rest);
-    double sint_gamma1_rest = TMath::Sin(th_gamma1_rest);
-
-    double phi_gamma1_rest = r1->Uniform(-1.*TMath::Pi(),1.*TMath::Pi());
-    double cosp_gamma1_rest = TMath::Cos(phi_gamma1_rest);
-    double sinp_gamma1_rest = TMath::Sin(phi_gamma1_rest);
-
-    // Photons are massless so they each get equal energies
-    gamma1_rest.SetE(pi0_mass/2.);
-    gamma1_rest.SetPx( (pi0_mass/2.)*sint_gamma1_rest*cosp_gamma1_rest );
-    gamma1_rest.SetPy( (pi0_mass/2.)*sint_gamma1_rest*sinp_gamma1_rest );
-    gamma1_rest.SetPz( (pi0_mass/2.)*cost_gamma1_rest );
-
-    gamma2_rest.SetE(pi0_mass/2.);
-    gamma2_rest.SetPx( -gamma1_rest.Px() );
-    gamma2_rest.SetPy( -gamma1_rest.Py() );
-    gamma2_rest.SetPz( -gamma1_rest.Pz() );
-
-    // Boost neutron & pion to lab frame
-    TVector3 pi0_boost = pi0_lab.BoostVector();
-    TLorentzVector gamma1_lab, gamma2_lab;
-    gamma1_lab = gamma1_rest; 
-    gamma1_lab.Boost(pi0_boost);
-    gamma2_lab = gamma2_rest; 
-    gamma2_lab.Boost(pi0_boost);
-  
-    GenParticlePtr p_gamma1 = std::make_shared<GenParticle>(
-      FourVector(gamma1_lab.Px(), gamma1_lab.Py(), gamma1_lab.Pz(), gamma1_lab.E()), photon_pdgID, 1 );
-
-    GenParticlePtr p_gamma2 = std::make_shared<GenParticle>(
-      FourVector(gamma2_lab.Px(), gamma2_lab.Py(), gamma2_lab.Pz(), gamma2_lab.E()), photon_pdgID, 1 );
-
-    // Generate pi0 at same position as the lambda. Approximating pi0 decay as instantaneous
-    GenVertexPtr v_pi0_decay = std::make_shared<GenVertex>(FourVector(lambda_decay_position.X(), lambda_decay_position.Y(), lambda_decay_position.Z(), lambda_decay_time));
-    v_pi0_decay->add_particle_in(p_pi0);
-    v_pi0_decay->add_particle_out(p_gamma1);
-    v_pi0_decay->add_particle_out(p_gamma2);
-
-    //std::cout<<  lambda_pvec.Angle(pbeam_dir) << " " << neutron_lab.Angle(pbeam_dir) << " " << gamma1_lab.Angle(pbeam_dir) << " " << gamma2_lab.Angle(pbeam_dir) << std::endl;
-    
-    evt.add_vertex(v_pi0_decay);
-
-    if (events_parsed == 0) {
-      std::cout << "First event: " << std::endl;
-      Print::listing(evt);
-    }
-    double zdc_z=35800;
-    TVector3 extrap_neutron=lambda_decay_position+neutron_lab.Vect()*((zdc_z-pbeam_dir.Dot(lambda_decay_position))/(pbeam_dir.Dot(neutron_lab.Vect())));
-    TVector3 extrap_gamma1=lambda_decay_position+gamma1_lab.Vect()*((zdc_z-pbeam_dir.Dot(lambda_decay_position))/(pbeam_dir.Dot(gamma1_lab.Vect())));
-    TVector3 extrap_gamma2=lambda_decay_position+gamma2_lab.Vect()*((zdc_z-pbeam_dir.Dot(lambda_decay_position))/(pbeam_dir.Dot(gamma2_lab.Vect())));
-    if (extrap_neutron.Angle(pbeam_dir)<0.004 && extrap_gamma1.Angle(pbeam_dir)<0.004 && extrap_gamma2.Angle(pbeam_dir)<0.004 && lambda_decay_position.Dot(pbeam_dir)<zdc_z)
-      hepmc_output.write_event(evt);
-    if (events_parsed % 1000 == 0) {
-      std::cout << "Event: " << events_parsed << std::endl;
-    }
-    evt.clear();
-  }
-  hepmc_output.close();
-
-  std::cout << "Events parsed and written: " << events_parsed << std::endl;
-}
diff --git a/benchmarks/lambda/analysis/lambda_plots.py b/benchmarks/lambda/analysis/lambda_plots.py
deleted file mode 100644
index dffccb1c2bb7efecf266960ef997c7b812f685c9..0000000000000000000000000000000000000000
--- a/benchmarks/lambda/analysis/lambda_plots.py
+++ /dev/null
@@ -1,371 +0,0 @@
-import numpy as np, pandas as pd, matplotlib.pyplot as plt, matplotlib as mpl, awkward as ak, sys
-import mplhep as hep
-hep.style.use("CMS")
-
-plt.rcParams['figure.facecolor']='white'
-plt.rcParams['savefig.facecolor']='white'
-plt.rcParams['savefig.bbox']='tight'
-
-plt.rcParams["figure.figsize"] = (7, 7)
-
-outdir=sys.argv[1]+"/"
-try:
-    import os
-    os.mkdir(outdir[:-1])
-except:
-    pass
-import uproot as ur
-arrays_sim={}
-momenta=100, 125, 150, 175,200,225,250,275
-for p in momenta:
-    filename=f'sim_output/lambda/epic_zdc_sipm_on_tile_only_rec_lambda_dec_{p}GeV.edm4hep.root'
-    print("opening file", filename)
-    events = ur.open(filename+':events')
-    arrays_sim[p] = events.arrays()[:-1] #remove last event, which for some reason is blank
-    import gc
-    gc.collect()
-    print("read", filename)
-
-def gauss(x, A,mu, sigma):
-    return A * np.exp(-(x-mu)**2/(2*sigma**2))
-
-#keep track of the number of clusters per event
-nclusters={}
-
-for p in momenta:
-    plt.figure()
-    nclusters[p]=[]
-    for i in range(len(arrays_sim[p])):
-        nclusters[p].append(len(arrays_sim[p]["HcalFarForwardZDCClusters.position.x"][i]))
-    nclusters[p]=np.array(nclusters[p])
-    plt.hist(nclusters[p],bins=20, range=(0,20))
-    plt.xlabel("number of clusters")
-    plt.yscale('log')
-    plt.title(f"$p_\Lambda={p}$ GeV")
-    plt.ylim(1)
-    plt.savefig(outdir+f"nclust_{p}GeV_recon.pdf")
-    print("saved file ", outdir+f"nclust_{p}GeV_recon.pdf")
-
-
-
-pt_truth={}
-theta_truth={}
-
-for p in momenta:
-    #get the truth value of theta* and pt*
-    px=arrays_sim[p]["MCParticles.momentum.x"][:,2]
-    py=arrays_sim[p]["MCParticles.momentum.y"][:,2]
-    pz=arrays_sim[p]["MCParticles.momentum.z"][:,2]
-    tilt=-0.025
-    pt_truth[p]=np.hypot(px*np.cos(tilt)-pz*np.sin(tilt), py)
-    theta_truth[p]=np.arctan2(pt_truth[p],pz*np.cos(tilt)+px*np.sin(tilt))
-
-
-#create an array with the same shape as the cluster-level arrays
-is_neutron_cand={}
-for p in momenta:
-    is_neutron_cand[p]=(0*arrays_sim[p][f"HcalFarForwardZDCClusters.energy"]).to_list()
-    
-    #largest_eigenvalues
-    for i in range(len(arrays_sim[p])):
-        pars=arrays_sim[p]["_HcalFarForwardZDCClusters_shapeParameters"][i]
-        index_of_max=-1
-        max_val=0
-        eigs=[]
-        shape_params_per_cluster=7
-        for j in range(len(pars)//shape_params_per_cluster):
-            largest_eigenvalue=max(pars[shape_params_per_cluster*j+4:shape_params_per_cluster*j+7])
-            eigs.append(largest_eigenvalue)
-            if(largest_eigenvalue>max_val):
-                max_val=largest_eigenvalue
-                index_of_max=j
-        if index_of_max >=0:
-            is_neutron_cand[p][i][index_of_max]=1
-        eigs.sort()
-        
-    is_neutron_cand[p]=ak.Array(is_neutron_cand[p])
-
-
-#with the position of the vertex determined by assuming the mass of the pi0
-#corrected pt* and theta* recon
-pt_recon_corr={}
-theta_recon_corr={}
-mass_recon_corr={}
-mass_pi0_recon_corr={}
-pi0_converged={}
-zvtx_recon={}
-
-maxZ=35800
-for p in momenta:
-    xvtx=0
-    yvtx=0
-    zvtx=0
-    
-    for iteration in range(20):
-    
-        #compute the value of theta* using the clusters in the ZDC
-        xc=arrays_sim[p][f"HcalFarForwardZDCClusters.position.x"]
-        yc=arrays_sim[p][f"HcalFarForwardZDCClusters.position.y"]
-        zc=arrays_sim[p][f"HcalFarForwardZDCClusters.position.z"]
-        E=arrays_sim[p][f"HcalFarForwardZDCClusters.energy"]
-        #apply correction to the neutron candidates only
-        A,B,C=-0.0756, -1.91,  2.30
-        neutron_corr=(1-is_neutron_cand[p])+is_neutron_cand[p]/(1+A+B/np.sqrt(E)+C/E)
-        E=E*neutron_corr
-
-        E_recon=np.sum(E, axis=-1)
-        pabs=np.sqrt(E**2-is_neutron_cand[p]*.9406**2)
-        tilt=-0.025
-        xcp=xc*np.cos(tilt)-zc*np.sin(tilt)
-        ycp=yc
-        zcp=zc*np.cos(tilt)+xc*np.sin(tilt)
-        rcp=np.sqrt(xcp**2+ycp**2+zcp**2)
-        
-        ux=(xcp-xvtx)
-        uy=(ycp-yvtx)
-        uz=(zcp-zvtx)
-        
-        norm=np.sqrt(ux**2+uy**2+uz**2)
-        ux=ux/norm
-        uy=uy/norm
-        uz=uz/norm
-        
-        px_recon,py_recon,pz_recon=np.sum(pabs*ux, axis=-1),np.sum(pabs*uy, axis=-1),np.sum(pabs*uz, axis=-1)
-
-        pt_recon_corr[p]=np.hypot(px_recon,py_recon)
-        theta_recon_corr[p]=np.arctan2(pt_recon_corr[p], pz_recon)
-        
-        mass_recon_corr[p]=np.sqrt((E_recon)**2\
-                                -(px_recon)**2\
-                                -(py_recon)**2\
-                                -(pz_recon)**2)
-        mass_pi0_recon_corr[p]=np.sqrt(np.sum(pabs*(1-is_neutron_cand[p]), axis=-1)**2\
-                                    -np.sum(pabs*ux*(1-is_neutron_cand[p]), axis=-1)**2\
-                                    -np.sum(pabs*uy*(1-is_neutron_cand[p]), axis=-1)**2\
-                                    -np.sum(pabs*uz*(1-is_neutron_cand[p]), axis=-1)**2)
-        alpha=1
-        if iteration==0:
-            u=np.sqrt(px_recon**2+py_recon**2+pz_recon**2)
-            ux=px_recon/u
-            uy=py_recon/u
-            uz=pz_recon/u
-            zeta=1/2
-            zvtx=maxZ*np.power(zeta,alpha)
-            xvtx=ux/uz*zvtx
-            yvtx=uy/uz*zvtx
-        else :
-            u=np.sqrt(px_recon**2+py_recon**2+pz_recon**2)
-            ux=px_recon/u
-            uy=py_recon/u
-            uz=pz_recon/u
-            s=2*(mass_pi0_recon_corr[p]<0.135)-1
-            zeta=np.power(zvtx/maxZ, 1/alpha)
-            zeta=zeta+s*1/2**(1+iteration)
-            zvtx=maxZ*np.power(zeta,alpha)
-            xvtx=ux/uz*zvtx
-            yvtx=uy/uz*zvtx
-        #print(zvtx)
-    pi0_converged[p]=np.abs(mass_pi0_recon_corr[p]-0.135)<0.01
-    zvtx_recon[p]=zvtx
-        
-fig,axs=plt.subplots(1,3, figsize=(24, 8))
-plt.sca(axs[0])
-plt.title(f"$E_{{\\Lambda}}=100-275$ GeV")
-x=[]
-y=[]
-for p in momenta:
-    accept=(nclusters[p]==3) &(pi0_converged[p])
-    x+=list(theta_truth[p][accept]*1000)
-    y+=list(theta_recon_corr[p][accept]*1000)
-plt.scatter(x,y)
-plt.xlabel("$\\theta^{*\\rm truth}_{\\Lambda}$ [mrad]")
-plt.ylabel("$\\theta^{*\\rm recon}_{\\Lambda}$ [mrad]")
-plt.xlim(0,3.2)
-plt.ylim(0,3.2)
-
-plt.sca(axs[1])
-plt.title(f"$E_{{\\Lambda}}=100-275$ GeV")
-y,x,_=plt.hist(y-np.array(x), bins=50, range=(-1,1))
-bc=(x[1:]+x[:-1])/2
-
-from scipy.optimize import curve_fit
-slc=abs(bc)<0.3
-fnc=gauss
-p0=[100, 0, 0.05]
-coeff, var_matrix = curve_fit(fnc, bc[slc], y[slc], p0=p0,
-                                 sigma=np.sqrt(y[slc])+(y[slc]==0))
-x=np.linspace(-1, 1)
-plt.plot(x, gauss(x, *coeff), color='tab:orange')
-plt.xlabel("$\\theta^{*\\rm recon}_{\\Lambda}-\\theta^{*\\rm truth}_{\\Lambda}$ [mrad]")
-plt.ylabel("events")
-
-plt.sca(axs[2])
-sigmas=[]
-dsigmas=[]
-xvals=[]
-for p in momenta:
-    
-    accept=(nclusters[p]==3) &(pi0_converged[p])
-    y,x=np.histogram((theta_recon_corr[p]-theta_truth[p])[accept]*1000, bins=100, range=(-1,1))
-    bc=(x[1:]+x[:-1])/2
-
-    from scipy.optimize import curve_fit
-    slc=abs(bc)<0.3
-    fnc=gauss
-    p0=(100, 0, 0.06)
-    #print(bc[slc],y[slc])
-    sigma=np.sqrt(y[slc])+(y[slc]==0)
-    try:
-        coeff, var_matrix = curve_fit(fnc, list(bc[slc]), list(y[slc]), p0=p0,sigma=list(sigma))
-        sigmas.append(coeff[2])
-        dsigmas.append(np.sqrt(var_matrix[2][2]))
-        xvals.append(p)
-    except:
-        print("fit failed")
-plt.ylim(0, 0.3)
-
-plt.errorbar(xvals, sigmas, dsigmas, ls='', marker='o', color='k')
-x=np.linspace(100, 275, 100)
-plt.plot(x, 3/np.sqrt(x), color='tab:orange')
-plt.text(170, .23, "YR requirement:\n   3 mrad/$\\sqrt{E}$")
-plt.xlabel("$E_{\\Lambda}$ [GeV]")
-plt.ylabel("$\\sigma[\\theta^*_{\\Lambda}]$ [mrad]")
-plt.tight_layout()
-plt.savefig(outdir+"thetastar_recon.pdf")
-#plt.show()
-
-
-fig,axs=plt.subplots(1,3, figsize=(24, 8))
-plt.sca(axs[0])
-plt.title(f"$E_{{\\Lambda}}=100-275$ GeV")
-x=[]
-y=[]
-for p in momenta:
-    accept=(nclusters[p]==3) &(pi0_converged[p])
-    x+=list(arrays_sim[p]['MCParticles.vertex.z'][:,3][accept]/1000)
-    y+=list(zvtx_recon[p][accept]/1000)
-plt.scatter(x,y)
-#print(x,y)
-plt.xlabel("$z^{\\rm truth}_{\\rm vtx}$ [m]")
-plt.ylabel("$z^{\\rm recon}_{\\rm vtx}$  [m]")
-plt.xlim(0,40)
-plt.ylim(0,40)
-
-plt.sca(axs[1])
-plt.title(f"$E_{{\\Lambda}}=100-275$ GeV")
-y,x,_=plt.hist(y-np.array(x), bins=50, range=(-10,10))
-bc=(x[1:]+x[:-1])/2
-
-from scipy.optimize import curve_fit
-slc=abs(bc)<5
-fnc=gauss
-p0=[100, 0, 1]
-coeff, var_matrix = curve_fit(fnc, bc[slc], y[slc], p0=p0,
-                                 sigma=np.sqrt(y[slc])+(y[slc]==0))
-x=np.linspace(-5, 5)
-plt.plot(x, gauss(x, *coeff), color='tab:orange')
-print(coeff[2], np.sqrt(var_matrix[2][2]))
-plt.xlabel("$z^{*\\rm recon}_{\\rm vtx}-z^{*\\rm truth}_{\\rm vtx}$ [m]")
-plt.ylabel("events")
-
-plt.sca(axs[2])
-sigmas=[]
-dsigmas=[]
-xvals=[]
-for p in momenta:
-    
-    accept=(nclusters[p]==3) &(pi0_converged[p])
-    a=list((zvtx_recon[p]-arrays_sim[p]['MCParticles.vertex.z'][:,3])[accept]/1000)
-    y,x=np.histogram(a, bins=100, range=(-10,10))
-    bc=(x[1:]+x[:-1])/2
-
-    from scipy.optimize import curve_fit
-    slc=abs(bc)<5
-    fnc=gauss
-    p0=(100, 0, 1)
-    #print(bc[slc],y[slc])
-    sigma=np.sqrt(y[slc])+(y[slc]==0)
-    try:
-        coeff, var_matrix = curve_fit(fnc, list(bc[slc]), list(y[slc]), p0=p0,sigma=list(sigma))
-        sigmas.append(coeff[2])
-        dsigmas.append(np.sqrt(var_matrix[2][2]))
-        xvals.append(p)
-    except:
-        print("fit failed")
-plt.ylim(0, 2)
-
-plt.errorbar(xvals, sigmas, dsigmas, ls='', marker='o', color='k')
-x=np.linspace(100, 275, 100)
-
-avg=np.sum(sigmas/np.array(dsigmas)**2)/np.sum(1/np.array(dsigmas)**2)
-plt.axhline(avg, color='tab:orange')
-plt.text(150, 1.25,f"$\\sigma\\approx${avg:.1f} m")
-
-plt.xlabel("$E_{\\Lambda}$ [GeV]")
-plt.ylabel("$\\sigma[z_{\\rm vtx}]$ [m]")
-plt.tight_layout()
-plt.savefig(outdir+"zvtx_recon.pdf")
-#plt.show()
-
-p=100
-fig,axs=plt.subplots(1,2, figsize=(16, 8))
-plt.sca(axs[0])
-lambda_mass=1.115683
-vals=[]
-for p in momenta:
-    accept=(nclusters[p]==3) &(pi0_converged[p])
-    vals+=list(mass_recon_corr[p][accept])
-
-y,x,_= plt.hist(vals, bins=100, range=(1.0, 1.25))
-bc=(x[1:]+x[:-1])/2
-plt.axvline(lambda_mass, ls='--', color='tab:green', lw=3)
-plt.text(lambda_mass+.01, np.max(y)*1.05, "PDG mass", color='tab:green')
-plt.xlabel("$m_{\\Lambda}^{\\rm recon}$ [GeV]")
-plt.ylim(0, np.max(y)*1.2)
-plt.xlim(1.0, 1.25)
-
-from scipy.optimize import curve_fit
-slc=abs(bc-lambda_mass)<0.07
-fnc=gauss
-p0=[100, lambda_mass, 0.04]
-coeff, var_matrix = curve_fit(fnc, bc[slc], y[slc], p0=p0,
-                                 sigma=np.sqrt(y[slc])+(y[slc]==0))
-x=np.linspace(0.8, 1.3, 200)
-plt.plot(x, gauss(x, *coeff), color='tab:orange')
-print(coeff[2], np.sqrt(var_matrix[2][2]))
-plt.xlabel("$m^{\\rm recon}_{\\Lambda}$ [GeV]")
-plt.ylabel("events")
-plt.title(f"$E_{{\\Lambda}}=100-275$ GeV")
-
-plt.sca(axs[1])
-xvals=[]
-sigmas=[]
-dsigmas=[]
-for p in momenta:
-    accept=(nclusters[p]==3) &(pi0_converged[p])
-    y,x= np.histogram(mass_recon_corr[p][accept], bins=100, range=(0.6,1.4))
-    bc=(x[1:]+x[:-1])/2
-
-    from scipy.optimize import curve_fit
-    slc=abs(bc-lambda_mass)<0.07
-    fnc=gauss
-    p0=[100, lambda_mass, 0.05]
-    try:
-        coeff, var_matrix = curve_fit(fnc, list(bc[slc]), list(y[slc]), p0=p0,
-                                       sigma=list(np.sqrt(y[slc])+(y[slc]==0)))
-        x=np.linspace(0.8, 1.3, 200)
-        sigmas.append(coeff[2])
-        dsigmas.append(np.sqrt(var_matrix[2][2]))
-        xvals.append(p)
-    except:
-        print("fit failed")
-    
-plt.errorbar(xvals, sigmas, dsigmas, ls='', marker='o', color='k')
-avg=np.sum(sigmas/np.array(dsigmas)**2)/np.sum(1/np.array(dsigmas)**2)
-plt.axhline(avg, color='tab:orange')
-plt.text(150, 0.01,f"$\\sigma\\approx${avg*1000:.0f} MeV")
-plt.xlabel("$E_{\\Lambda}$ [GeV]")
-plt.ylabel("$\\sigma[m_{\\Lambda}]$ [GeV]")
-plt.ylim(0, 0.02)
-plt.tight_layout()
-plt.savefig(outdir+"lambda_mass_rec.pdf")
diff --git a/benchmarks/lambda/config.yml b/benchmarks/lambda/config.yml
deleted file mode 100644
index 877d7016db41b2c9b0b99b7af617ae2bdbef4918..0000000000000000000000000000000000000000
--- a/benchmarks/lambda/config.yml
+++ /dev/null
@@ -1,34 +0,0 @@
-lambda:simulate:
-  stage: simulate
-  extends: .phy_benchmark
-  needs: ["common:detector"]
-  parallel:
-    matrix:
-      - P: 100
-      - P: 125
-      - P: 150
-      - P: 175
-      - P: 200
-      - P: 225
-      - P: 250
-      - P: 275
-  timeout: 6 hours
-  script:
-    - snakemake --cores 1 sim_output/lambda/epic_zdc_sipm_on_tile_only_rec_lambda_dec_${P}GeV.edm4hep.root 
-  retry:
-    max: 2
-    when:
-      - runner_system_failure
-
-lambda:analyze:
-  stage: analyze
-  extends: .phy_benchmark
-  needs: ["lambda:simulate"]
-  script:
-    - snakemake --cores 1 results/epic_zdc_sipm_on_tile_only/lambda 
-
-lambda:results:
-  stage: collect
-  needs: ["lambda:analyze"]
-  script:
-    - ls -al
diff --git a/benchmarks/lambda/test_lambda_recon.py b/benchmarks/lambda/test_lambda_recon.py
deleted file mode 100644
index 4b92d36e4aef3b0194e6418fcddd30f086cb198d..0000000000000000000000000000000000000000
--- a/benchmarks/lambda/test_lambda_recon.py
+++ /dev/null
@@ -1,32 +0,0 @@
-import uproot as ur
-filename=f"lambda_recon.root"
-events = ur.open(f'{filename}:events')
-arrays = events.arrays()
-
-#get the truth value of theta*
-px=arrays_sim["MCParticles.momentum.x"][:,2]
-py=arrays_sim["MCParticles.momentum.y"][:,2]
-pz=arrays_sim["MCParticles.momentum.z"][:,2]
-tilt=-0.025
-pt=np.hypot(px*np.cos(tilt)-pz*np.sin(tilt), py)
-theta=np.arctan2(pt,pz*np.cos(tilt)+px*np.sin(tilt))
-
-#compute the value of theta* using the clusters in the ZDC
-xc=arrays["HcalFarForwardZDCClusters.position.x"]
-yc=arrays["HcalFarForwardZDCClusters.position.y"]
-zc=arrays["HcalFarForwardZDCClusters.position.z"]
-E=arrays_sim["HcalFarForwardZDCClusters.energy"]
-
-rc=np.sqrt(xc**2+yc**2+zc**2)
-xcp=xc*np.cos(tilt)-zc*np.sin(tilt)
-ycp=yc
-zcp=zc*np.cos(tilt)+xc*np.sin(tilt)
-
-E=arrays_sim["HcalFarForwardZDCClusters.energy"][i]
-
-px_recon,py_recon,pz_recon=np.sum(E*xcp/rc, axis=-1),np.sum(E*ycp/rc, axis=-1),np.sum(E*zcp/rc, axis=-1)
-pt_recon=np.hypot(px_recon,py_recon)
-theta_recon=np.arctan2(pt_recon, np.sum(E, axis=-1))
-
-
-
diff --git a/benchmarks/neutron/Snakefile b/benchmarks/neutron/Snakefile
deleted file mode 100644
index 5b5658f955e5f64cd84c895b271c035259a73c79..0000000000000000000000000000000000000000
--- a/benchmarks/neutron/Snakefile
+++ /dev/null
@@ -1,57 +0,0 @@
-rule neutron_generate:
-	input:
-                script="benchmarks/neutron/analysis/gen_particles.cxx",
-	params:
-		NEVENTS_GEN=1000,
-		th_max=5.7,
-		th_min=2.0
-	output:
-		GEN_FILE="sim_output/neutron/neutron_{P}GeV.hepmc"
-	shell:
-		"""
-root -l -b -q '{input.script}({params.NEVENTS_GEN},"{output.GEN_FILE}", "neutron", {params.th_min}, {params.th_max}, 0., 360., {wildcards.P})'
-"""
-
-rule neutron_simulate:
-	input:
-		GEN_FILE="sim_output/neutron/neutron_{P}GeV.hepmc"
-	params:
-		PHYSICS_LIST="FTFP_BERT"
-	output:
-		SIM_FILE="sim_output/neutron/{DETECTOR_CONFIG}_sim_neutron_{P}GeV.edm4hep.root"
-	shell:
-		"""
-NEVENTS_SIM=1000
-# Running simulation
-npsim \
-   --compactFile $DETECTOR_PATH/{wildcards.DETECTOR_CONFIG}.xml \
-   --numberOfEvents $NEVENTS_SIM \
-   --physicsList {params.PHYSICS_LIST} \
-   --inputFiles {input.GEN_FILE} \
-   --outputFile {output.SIM_FILE}
-"""
-
-rule neutron_recon:
-        input:
-                SIM_FILE="sim_output/neutron/{DETECTOR_CONFIG}_sim_neutron_{P}GeV.edm4hep.root"
-        output:
-                REC_FILE="sim_output/neutron/{DETECTOR_CONFIG}_rec_neutron_{P}GeV.edm4hep.root"
-        shell:
-                """
-NEVENTS_REC=1000
-eicrecon {input.SIM_FILE} -Ppodio:output_file={output.REC_FILE} -Pdd4hep:xml_files=$DETECTOR_PATH/{wildcards.DETECTOR_CONFIG}.xml -Ppodio:output_collections=MCParticles,HcalEndcapPInsertRecHits,HcalEndcapPInsertClusters,HcalEndcapPInsertSubcellHits,EcalEndcapPInsertRecHits,EcalEndcapPInsertClusters  -Pjana:nevents=$NEVENTS_REC
-"""
-
-rule neutron_analysis:
-	input:
-                expand("sim_output/neutron/{DETECTOR_CONFIG}_rec_neutron_{P}GeV.edm4hep.root",
-		    P=[20, 30, 40, 50, 60, 70, 80],
-		    DETECTOR_CONFIG=["{DETECTOR_CONFIG}"]),
-                script="benchmarks/neutron/analysis/neutron_plots.py",
-	output:
-		results_dir=directory("results/{DETECTOR_CONFIG}/neutron"),
-	shell:
-		"""
-mkdir -p {output.results_dir}
-python {input.script} {output.results_dir}
-"""
diff --git a/benchmarks/neutron/analysis/gen_particles.cxx b/benchmarks/neutron/analysis/gen_particles.cxx
deleted file mode 100644
index 0877a85223bbc1af27af91e7dedfb212de7cb20b..0000000000000000000000000000000000000000
--- a/benchmarks/neutron/analysis/gen_particles.cxx
+++ /dev/null
@@ -1,127 +0,0 @@
-#include "HepMC3/GenEvent.h"
-#include "HepMC3/ReaderAscii.h"
-#include "HepMC3/WriterAscii.h"
-#include "HepMC3/Print.h"
-
-#include "TRandom3.h"
-#include "TVector3.h"
-
-#include <iostream>
-#include <random>
-#include <cmath>
-#include <math.h>
-#include <TMath.h>
-#include <TDatabasePDG.h>
-#include <TParticlePDG.h>
-
-using namespace HepMC3;
-
-// Generate single electron as input to the Insert simulation.
-// --
-// We generate events with a constant polar angle with respect to
-// the proton direction and then rotate so that the events are given
-// in normal lab coordinate system
-// --
-void gen_particles(
-                    int n_events = 1000, 
-                    const char* out_fname = "gen_particles.hepmc", 
-                    TString particle_name = "e-",
-                    double th_min = 3., // Minimum polar angle, in degrees
-		    double th_max = 3., // Maximum polar angle, in degrees
-		    double phi_min = 0., // Minimum azimuthal angle, in degrees
-                    double phi_max = 360., // Maximum azimuthal angle, in degrees
-                    double p = 10.,  // Momentum in GeV/c
-		    int dist = 0,  //Momentum distribution: 0=fixed, 1=uniform, 2=Gaussian
-		    int useCrossingAngle=1  // 0= no rotation, 1 = -25 mrad
-                  )
-{ 
-  WriterAscii hepmc_output(out_fname);
-  int events_parsed = 0;
-  GenEvent evt(Units::GEV, Units::MM);
-
-  // Random number generator
-  TRandom3 *r1 = new TRandom3(0); //Use time as random seed
-  
-  // Getting generated particle information
-  TDatabasePDG *pdg = new TDatabasePDG();
-  TParticlePDG *particle = pdg->GetParticle(particle_name);
-  const double mass = particle->Mass();
-  const int pdgID = particle->PdgCode();
-
-  for (events_parsed = 0; events_parsed < n_events; events_parsed++) {
-
-    //Set the event number
-    evt.set_event_number(events_parsed);
-
-    // FourVector(px,py,pz,e,pdgid,status)
-    // type 4 is beam
-    // pdgid 11 - electron
-    // pdgid 111 - pi0
-    // pdgid 2212 - proton
-    GenParticlePtr p1 =
-        std::make_shared<GenParticle>(FourVector(0.0, 0.0, 10.0, 10.0), 11, 4);
-    GenParticlePtr p2 = std::make_shared<GenParticle>(
-        FourVector(0.0, 0.0, 0.0, 0.938), 2212, 4);
-
-    // Define momentum with respect to proton direction
-    double phi   = r1->Uniform(phi_min*TMath::DegToRad(),phi_max*TMath::DegToRad());
-    double th    = r1->Uniform(th_min*TMath::DegToRad(),th_max*TMath::DegToRad());
-
-    //Total momentum distribution
-    double pevent = -1;
-    if(dist==0){ //fixed
-	pevent = p;
-    }
-    else if(dist==1){ //Uniform: +-50% variation
-	pevent = p*(1. + r1->Uniform(-0.5,0.5) );
-    }
-    else if(dist==2){  //Gaussian: Sigma = 0.1*mean
-	while(pevent<0) //Avoid negative values
-		pevent = r1->Gaus(p,0.1*p);
-    }
-
-    double px    = pevent * std::cos(phi) * std::sin(th);
-    double py    = pevent * std::sin(phi) * std::sin(th);
-    double pz    = pevent * std::cos(th);
-    TVector3 pvec(px,py,pz); 
-
-    //Rotate to lab coordinate system
-    double cross_angle = -25./1000.*useCrossingAngle; //in Rad
-    TVector3 pbeam_dir(sin(cross_angle),0,cos(cross_angle)); //proton beam direction
-    pvec.RotateY(-pbeam_dir.Theta()); // Theta is returned positive, beam in negative X
-    // type 1 is final state
-    // pdgid 11 - electron 0.510 MeV/c^2
-    GenParticlePtr p3 = std::make_shared<GenParticle>(
-        FourVector(
-            pvec.X(), pvec.Y(), pvec.Z(),
-            sqrt(pevent*pevent + (mass * mass))),
-        pdgID, 1);
-
-    //If wanted, set non-zero vertex
-    double vx = 0.;
-    double vy = 0.;
-    double vz = 0.;
-    double vt = 0.;
-
-    GenVertexPtr v1 = std::make_shared<GenVertex>();
-    evt.shift_position_by(FourVector(vx, vy, vz, vt));
-    v1->add_particle_in(p1);
-    v1->add_particle_in(p2);
-
-    v1->add_particle_out(p3);
-    evt.add_vertex(v1);
-
-    if (events_parsed == 0) {
-      std::cout << "First event: " << std::endl;
-      Print::listing(evt);
-    }
-
-    hepmc_output.write_event(evt);
-    if (events_parsed % 100 == 0) {
-      std::cout << "Event: " << events_parsed << std::endl;
-    }
-    evt.clear();
-  }
-  hepmc_output.close();
-  std::cout << "Events parsed and written: " << events_parsed << std::endl;
-}
diff --git a/benchmarks/neutron/analysis/neutron_plots.py b/benchmarks/neutron/analysis/neutron_plots.py
deleted file mode 100644
index 0f174c8d7a7c1d93dab439fe00c29b2ce665a343..0000000000000000000000000000000000000000
--- a/benchmarks/neutron/analysis/neutron_plots.py
+++ /dev/null
@@ -1,295 +0,0 @@
-import numpy as np, pandas as pd, matplotlib.pyplot as plt, matplotlib as mpl, awkward as ak, sys, uproot as ur
-import mplhep as hep
-hep.style.use("CMS")
-
-plt.rcParams['figure.facecolor']='white'
-plt.rcParams['savefig.facecolor']='white'
-plt.rcParams['savefig.bbox']='tight'
-
-plt.rcParams["figure.figsize"] = (7, 7)
-config=sys.argv[1].split("/")[1]  #results/{config}/neutron
-outdir=sys.argv[1]+"/"
-try:
-    import os
-    os.mkdir(outdir[:-1])
-except:
-    pass
-
-#read files
-arrays_sim={}
-for p in 20,30,40,50,60,70,80:
-    arrays_sim[p] = ur.open(f'sim_output/neutron/{config}_rec_neutron_{p}GeV.edm4hep.root:events')\
-                    .arrays()
-
-def gauss(x, A,mu, sigma):
-    return A * np.exp(-(x-mu)**2/(2*sigma**2))
-
-#get the truth pseudorapidity and energy
-for array in arrays_sim.values():
-    tilt=-0.025
-    px=array['MCParticles.momentum.x'][:,2]
-    py=array['MCParticles.momentum.y'][:,2]
-    pz=array['MCParticles.momentum.z'][:,2]
-    p=np.sqrt(px**2+py**2+pz**2)
-    
-    pxp=px*np.cos(tilt)-pz*np.sin(tilt)
-    pyp=py
-    pzp=pz*np.cos(tilt)+px*np.sin(tilt)
-    
-    array['E_truth']=np.hypot(p, 0.9406)
-    array['eta_truth']=1/2*np.log((p+pzp)/(p-pzp))
-    array['theta_truth']=np.arccos(pzp/p)
-
-#
-# get reconstructed theta as avg of theta of cluster centers, weighted by energy
-for array in arrays_sim.values():
-    tilt=-0.025
-    x=array['HcalEndcapPInsertClusters.position.x']
-    y=array['HcalEndcapPInsertClusters.position.y']
-    z=array['HcalEndcapPInsertClusters.position.z']
-    E=array['HcalEndcapPInsertClusters.energy']
-    r=np.sqrt(x**2+y**2+z**2)
-    
-    xp=x*np.cos(tilt)-z*np.sin(tilt)
-    yp=y
-    zp=z*np.cos(tilt)+x*np.sin(tilt)
-    
-    w=E
-    
-    array['theta_recon']=np.sum(np.arccos(zp/r)*w, axis=-1)/np.sum(w, axis=-1)
-    array['eta_recon']=-np.log(np.tan(array['theta_recon']/2))
-    
-
-#plot theta residuals:
-print("making theta recon plot")
-from scipy.optimize import curve_fit
-
-fig, axs=plt.subplots(1,2, figsize=(16,8))
-plt.sca(axs[0])
-p=40
-eta_min=3.4; eta_max=3.6
-y,x,_=plt.hist(1000*(arrays_sim[p]['theta_recon']-arrays_sim[p]['theta_truth'])\
-               [(arrays_sim[p]['eta_truth']>eta_min)&(arrays_sim[p]['eta_truth']<eta_max)], bins=50,
-                    range=(-10,10), histtype='step')
-bc=(x[1:]+x[:-1])/2
-slc=abs(bc)<3
-# try:
-fnc=gauss
-sigma=np.sqrt(y[slc])+(y[slc]==0)
-p0=(100, 0, 5)
-coeff, var_matrix = curve_fit(fnc, list(bc[slc]), list(y[slc]), p0=p0,sigma=list(sigma))
-xx=np.linspace(-5,5,100)
-plt.plot(xx,fnc(xx,*coeff))
-# except:
-#     pass
-plt.xlabel("$\\theta_{rec}-\\theta_{truth}$ [mrad]")
-plt.ylabel("events")
-plt.title(f"$p={p}$ GeV, ${eta_min}<\\eta<{eta_max}$")
-
-r=[3.2,3.4,3.6,3.8,4.0]
-for eta_min, eta_max in zip(r[:-1],r[1:]):
-    xvals=[]
-    sigmas=[]
-    dsigmas=[]
-    for p in 20,30,40, 50, 60, 70, 80:
-        y,x=np.histogram(1000*(arrays_sim[p]['theta_recon']-arrays_sim[p]['theta_truth'])\
-                         [(arrays_sim[p]['eta_truth']>eta_min)&(arrays_sim[p]['eta_truth']<eta_max)],
-                         bins=50, range=(-10,10))
-        bc=(x[1:]+x[:-1])/2
-        slc=abs(bc)<3
-        fnc=gauss
-        p0=(100, 0, 5)
-        #print(bc[slc],y[slc])
-        sigma=np.sqrt(y[slc])+(y[slc]==0)
-        try:
-            coeff, var_matrix = curve_fit(fnc, list(bc[slc]), list(y[slc]), p0=p0,sigma=list(sigma))
-            sigmas.append(np.abs(coeff[2]))
-            dsigmas.append(np.sqrt(var_matrix[2][2]))
-            xvals.append(p)
-        except:
-            pass
-    plt.sca(axs[1])
-    plt.errorbar(xvals, sigmas, dsigmas, ls='', marker='o', label=f"${eta_min}<\\eta<{eta_max}$")
-    if eta_min==3.4:
-        fnc=lambda E, a, b: np.hypot(a,b/np.sqrt(E))
-        p0=[.002,.05]
-        coeff, var_matrix = curve_fit(fnc, xvals, sigmas, p0=p0,sigma=dsigmas)
-        xx=np.linspace(15, 85, 100)
-        axs[1].plot(xx, fnc(xx,*coeff), color='tab:purple',ls='--',
-            label=f'fit ${eta_min:.1f}<\\eta<{eta_max:.1f}$:\n'+\
-                f'({coeff[0]:.2f}$\\oplus\\frac{{{coeff[1]:.1f}}}{{\\sqrt{{E}}}}$) mrad')
-plt.xlabel("$p_{n}$ [GeV]")
-plt.ylabel("$\\sigma[\\theta]$ [mrad]")
-plt.ylim(0, 5)
-plt.legend()
-plt.tight_layout()
-plt.savefig(outdir+"neutron_theta_recon.pdf")
-
-#now determine the energy recon parameters
-pvals=[]
-resvals=[]
-reserrs=[]
-wvals=[]
-svals=[]
-Euncorr=[]
-
-print("determining the energy recon correction parameters")
-fig,axs=plt.subplots(1,2, figsize=(20,10))
-eta_min=3.4;eta_max=3.6
-for p in 20, 30,40,50,60,70, 80:
-    best_res=1000
-    res_err=1000
-    best_s=1000
-    wrange=np.linspace(0.8, 1.2, 41)
-    coeff_best=None
-    
-    wbest=0
-    a=arrays_sim[p]
-    h=np.sum(a[f'HcalEndcapPInsertClusters.energy'], axis=-1)
-    e=np.sum(a[f'EcalEndcapPInsertClusters.energy'], axis=-1)
-    for w in wrange:
-        
-        r=(e+h*w)[(h>0)&(a['eta_truth']>eta_min)&(a['eta_truth']<eta_max)]
-        y,x=np.histogram(r,bins=50)
-        bcs=(x[1:]+x[:-1])/2
-        fnc=gauss
-        slc=abs(bcs-np.mean(r)*1.25)<2*np.std(r)
-        sigma=np.sqrt(y[slc])+0.5*(y[slc]==0)
-        p0=(100, np.mean(r), np.std(r))
-        try:
-            coeff, var_matrix = curve_fit(fnc, list(bcs[slc]), list(y[slc]), p0=p0,sigma=list(sigma))
-            res=np.abs(coeff[2]/coeff[1])
-            
-            if res<best_res:
-                best_res=res
-                coeff_best=coeff
-                res_err=res*np.hypot(np.sqrt(var_matrix[2][2])/coeff[2], np.sqrt(var_matrix[1][1])/coeff[1])
-                wbest=w
-                best_s=np.hypot(p,0.9406)/coeff[1]
-                Euncorr_best=coeff[1]
-        except :
-            print("fit failed")
-    
-    if p==50:
-        r=(e+h*wbest)[(h>0)&(a['eta_truth']>3.4)&(a['eta_truth']<3.6)]
-        plt.sca(axs[0])
-        y, x, _= plt.hist(r, histtype='step', bins=50)
-        xx=np.linspace(20, 55, 100)
-        plt.plot(xx,fnc(xx, *coeff_best), ls='-')
-        plt.xlabel("$E_{uncorr}=w\\times E_{Hcal}+E_{Ecal}$ [GeV]")
-        plt.title(f"p=50 GeV, ${eta_min}<\\eta<{eta_max}$, w={wbest:.2f}")
-        plt.axvline(np.sqrt(50**2+.9406**2), color='g', ls=':')
-        plt.text(40, max(y)*0.9, "generated\nenergy", color='g', fontsize=20)
-        
-    Euncorr.append(Euncorr_best)
-    resvals.append(best_res)
-    reserrs.append(res_err)
-    pvals.append(p)
-    svals.append(best_s)
-    wvals.append(wbest)
-
-pvals=np.array(pvals)
-svals=np.array(svals)
-Euncorr=np.array(Euncorr)
-plt.sca(axs[1])
-plt.plot(Euncorr,wvals, label="w")
-w_avg=np.mean(wvals)
-plt.axhline(w_avg, label=f'w avg: {w_avg:.2f}', ls=':')
-plt.plot(Euncorr,svals, label="s")
-m=(np.sum(svals*Euncorr)*len(Euncorr)-np.sum(Euncorr)*np.sum(svals))/(np.sum(Euncorr**2)*len(Euncorr)-np.sum(Euncorr)**2)
-b=np.mean(svals)-np.mean(Euncorr)*m
-plt.plot(Euncorr,Euncorr*m+b, label=f"s fit: ${m:.4f}E_{{uncorr}}+{b:.2f}$", ls=':')
-
-plt.xlabel("$E_{uncorr}=w\\times E_{Hcal}+E_{Ecal}$ [GeV]")
-plt.title("$E_{n,recon}=s\\times(w\\times E_{Hcal}+E_{Ecal})$")
-plt.ylabel('parameter values')
-plt.legend()
-plt.ylim(0)
-plt.savefig(outdir+"neutron_energy_params.pdf")
-
-#now make the energy plot
-print("making energy recon plot")
-fig, axs=plt.subplots(1,3, figsize=(24,8))
-partitions=[3.2,3.4, 3.6, 3.8, 4.0]
-
-for eta_min, eta_max in zip(partitions[:-1],partitions[1:]):
-    pvals=[]
-    resvals=[]
-    reserrs=[]
-    scalevals=[]
-    scaleerrs=[]
-    for p in 20, 30,40,50,60,70, 80:
-        best_res=1000
-        res_err=1000
-
-        wrange=np.linspace(30, 70, 30)*0.0257
-        
-        w=w_avg
-        a=arrays_sim[p]
-        h=np.sum(a[f'HcalEndcapPInsertClusters.energy'], axis=-1)
-        e=np.sum(a[f'EcalEndcapPInsertClusters.energy'], axis=-1)
-        #phi=a['phi_truth']
-        uncorr=(e+h*w)
-        s=-0.0047*uncorr+1.64
-        r=uncorr*s #reconstructed energy with correction
-        r=r[(h>0)&(a['eta_truth']>eta_min)&(a['eta_truth']<eta_max)]#&(abs(phi)>np.pi/2)]
-        y,x=np.histogram(r,bins=50)
-        bcs=(x[1:]+x[:-1])/2
-        fnc=gauss
-        slc=abs(bcs-np.mean(r)*1.25)<2*np.std(r)
-        sigma=np.sqrt(y[slc])+0.5*(y[slc]==0)
-        p0=(100, np.mean(r), np.std(r))
-        try:
-            coeff, var_matrix = curve_fit(fnc, list(bcs[slc]), list(y[slc]), p0=p0,sigma=list(sigma))
-            res=np.abs(coeff[2]/coeff[1])
-
-            if res<best_res:
-                best_res=res
-                res_err=res*np.hypot(np.sqrt(var_matrix[2][2])/coeff[2], np.sqrt(var_matrix[1][1])/coeff[1])
-                wbest=w
-                scale=coeff[1]/np.sqrt(p**2+0.9406**2)
-                dscale=np.sqrt(var_matrix[1][1]/np.sqrt(p**2+0.9406**2))
-        except :
-            print("fit failed")
-        if p==50 and eta_min==3.4:
-            plt.sca(axs[0])
-            plt.errorbar(bcs, y, np.sqrt(y)+(y==0),marker='o', ls='', )
-            plt.title(f'p={p} GeV, ${eta_min}<\\eta<{eta_max}$')
-            plt.xlabel("$E_{recon}$ [GeV]")
-            plt.ylabel("events")
-            #plt.ylim(0)
-            xx=np.linspace(40, 70, 50)
-            plt.plot(xx, fnc(xx, *coeff))
-        resvals.append(best_res)
-        reserrs.append(res_err)
-        scalevals.append(scale)
-        scaleerrs.append(dscale)
-        pvals.append(p)
-    plt.sca(axs[1])
-    plt.errorbar(pvals, resvals, reserrs, marker='o', ls='', label=f"${eta_min}<\\eta<{eta_max}$")
-    #plt.ylim(0)
-    plt.ylabel("$\\sigma[E]/\\mu[E]$")
-    plt.xlabel("$p_{n}$ [GeV]")
-
-    plt.sca(axs[2])
-    plt.errorbar(pvals, scalevals, scaleerrs, marker='o', ls='', label=f"${eta_min}<\\eta<{eta_max}$")
-    
-    
-    plt.ylabel("$\\mu[E]/E$")
-    if eta_min==3.4:
-        fnc=lambda E, b: b/np.sqrt(E)
-        p0=[.5]
-        coeff, var_matrix = curve_fit(fnc, pvals, resvals, p0=p0,sigma=np.array(reserrs))
-        xx=np.linspace(15, 85, 100)
-        axs[1].plot(xx, fnc(xx,*coeff), color='tab:purple',ls='--',
-            label=f'fit ${eta_min:.1f}<\\eta<{eta_max:.1f}$: '+\
-                f'$\\frac{{{coeff[0]*100:.0f}\\%}}{{\\sqrt{{E}}}}$')
-axs[2].set_xlabel("$p_n$ [GeV]")
-axs[2].axhline(1, ls='--', color='0.5', alpha=0.7)
-axs[0].set_ylim(0)
-axs[1].set_ylim(0, 0.35)
-axs[2].set_ylim(0)
-axs[1].legend(fontsize=20)
-axs[2].legend(fontsize=20)
-plt.tight_layout()
-plt.savefig(outdir+"neutron_energy_recon.pdf")
diff --git a/benchmarks/neutron/config.yml b/benchmarks/neutron/config.yml
deleted file mode 100644
index 304b8311a47eac6ed00782815936edb5b047a9d9..0000000000000000000000000000000000000000
--- a/benchmarks/neutron/config.yml
+++ /dev/null
@@ -1,34 +0,0 @@
-neutron:simulate:
-  stage: simulate
-  extends: .phy_benchmark
-  needs: ["common:detector"]
-  parallel:
-    matrix:
-      - P: 20
-      - P: 30
-      - P: 40
-      - P: 50
-      - P: 60
-      - P: 70
-      - P: 80
-  timeout: 1 hours
-  script:
-    - snakemake --cores 1 sim_output/neutron/epic_craterlake_rec_neutron_${P}GeV.edm4hep.root 
-  retry:
-    max: 2
-    when:
-      - runner_system_failure
-
-neutron:analyze:
-  stage: analyze
-  extends: .phy_benchmark
-  needs: ["neutron:simulate"]
-  script:
-    - mkdir -p results/epic_craterlake
-    - python benchmarks/neutron/analysis/neutron_plots.py results/epic_craterlake/neutron
-
-neutron:results:
-  stage: collect
-  needs: ["neutron:analyze"]
-  script:
-    - ls -al
diff --git a/benchmarks/sigma/Snakefile b/benchmarks/sigma/Snakefile
deleted file mode 100644
index 77b64df8eb4c7c5b35c34be38b7184e58b25c99e..0000000000000000000000000000000000000000
--- a/benchmarks/sigma/Snakefile
+++ /dev/null
@@ -1,63 +0,0 @@
-rule sigma_generate:
-	input:
-                script="benchmarks/sigma/analysis/gen_sigma_decay.cxx",
-	params:
-		NEVENTS_GEN=100000,
-	output:
-		GEN_FILE="sim_output/sigma/sigma_decay_{P}GeV.hepmc"
-	shell:
-		"""
-root -l -b -q '{input.script}({params.NEVENTS_GEN},0,"{output.GEN_FILE}",{wildcards.P},{wildcards.P})'
-"""
-
-rule sigma_simulate:
-	input:
-		GEN_FILE="sim_output/sigma/sigma_decay_{P}GeV.hepmc"
-	params:
-		PHYSICS_LIST="FTFP_BERT"
-	output:
-		SIM_FILE="sim_output/sigma/{DETECTOR_CONFIG}_sim_sigma_dec_{P}GeV.edm4hep.root"
-	shell:
-		"""
-if [[ {wildcards.P} -gt 225 ]]; then
-   NEVENTS_SIM=1000
-else
-   NEVENTS_SIM=1000
-fi
-# Running simulation
-npsim \
-   --compactFile $DETECTOR_PATH/{wildcards.DETECTOR_CONFIG}.xml \
-   --numberOfEvents $NEVENTS_SIM \
-   --physicsList {params.PHYSICS_LIST} \
-   --inputFiles {input.GEN_FILE} \
-   --outputFile {output.SIM_FILE}
-"""
-
-rule sigma_recon:
-        input:
-                SIM_FILE="sim_output/sigma/{DETECTOR_CONFIG}_sim_sigma_dec_{P}GeV.edm4hep.root"
-        output:
-                REC_FILE="sim_output/sigma/{DETECTOR_CONFIG}_rec_sigma_dec_{P}GeV.edm4hep.root"
-        shell:
-                """
-if [[ {wildcards.P} -gt 225 ]]; then
-   NEVENTS_REC=1000
-else
-   NEVENTS_REC=1000
-fi
-eicrecon {input.SIM_FILE} -Ppodio:output_file={output.REC_FILE} -Pdd4hep:xml_files=$DETECTOR_PATH/{wildcards.DETECTOR_CONFIG}.xml -Ppodio:output_collections=MCParticles,HcalFarForwardZDCClusters,HcalFarForwardZDCRecHits,HcalFarForwardZDCSubcellHits  -Pjana:nevents=$NEVENTS_REC
-"""
-
-rule sigma_analysis:
-	input:
-                expand("sim_output/sigma/{DETECTOR_CONFIG}_rec_sigma_dec_{P}GeV.edm4hep.root",
-		    P=[100, 125, 150,175, 200, 225, 250, 275],
-		    DETECTOR_CONFIG=["{DETECTOR_CONFIG}"]),
-                script="benchmarks/sigma/analysis/sigma_plots.py",
-	output:
-		results_dir=directory("results/{DETECTOR_CONFIG}/sigma"),
-	shell:
-		"""
-mkdir -p {output.results_dir}
-python {input.script} {output.results_dir}
-"""
diff --git a/benchmarks/sigma/analysis/gen_sigma_decay.cxx b/benchmarks/sigma/analysis/gen_sigma_decay.cxx
deleted file mode 100644
index 4da92801257e861bca80cc6638722fff360019c7..0000000000000000000000000000000000000000
--- a/benchmarks/sigma/analysis/gen_sigma_decay.cxx
+++ /dev/null
@@ -1,305 +0,0 @@
-#include "HepMC3/GenEvent.h"
-#include "HepMC3/ReaderAscii.h"
-#include "HepMC3/WriterAscii.h"
-#include "HepMC3/Print.h"
-
-#include "TRandom3.h"
-#include "TVector3.h"
-
-#include <TDatabasePDG.h>
-#include <TParticlePDG.h>
-
-#include <iostream>
-#include <random>
-#include <TMath.h>
-
-using namespace HepMC3;
-
-std::tuple<double, int, double> GetParticleInfo(TDatabasePDG* pdg, TString particle_name)
-{
-  TParticlePDG *particle = pdg->GetParticle(particle_name);
-  const double mass = particle->Mass();
-  const int pdgID = particle->PdgCode();
-  const double lifetime = particle->Lifetime();
-  return std::make_tuple(mass, pdgID, lifetime);
-}
-// Calculates the decay length of a particle. Samples from an exponential decay.
-double GetDecayLength(TRandom3* r1, double lifetime, double mass, double momentum_magnitude)
-{ 
-  double c_speed = TMath::C() * 1000.; // speed of light im mm/sec
-  double average_decay_length = (momentum_magnitude/mass) * lifetime * c_speed;
-  return r1->Exp(average_decay_length);
-}
-
-// Generate single sigma baryons and decay them to a neutron + 2 photons
-void gen_sigma_decay(int n_events = 100000, UInt_t seed = 0, char* out_fname = "sigma_decay.hepmc",
-		      double p_min = 100., // in GeV/c
-		      double p_max = 275.) // in GeV/c
-{
-  int accepted_events=0;
-  const double theta_min = 0.0; // in mRad
-  const double theta_max = 3.0; // in mRad
-  //const double p_min = 100.; // in GeV/c
-  //const double p_max = 275.; // in GeV/c
-
-  WriterAscii hepmc_output(out_fname);
-  int events_parsed = 0;
-  GenEvent evt(Units::GEV, Units::MM);
-
-  // Random number generator
-  TRandom3 *r1 = new TRandom3(seed); //Default = 0, which uses clock to set seed
-  cout<<"Random number seed is "<<r1->GetSeed()<<"!"<<endl;
-
-  // Getting generated particle information
-  TDatabasePDG *pdg = new TDatabasePDG();
-  
-  auto sigma_info = GetParticleInfo(pdg, "Sigma0");
-  double sigma_mass = std::get<0>(sigma_info);
-  int sigma_pdgID = std::get<1>(sigma_info);
-  double sigma_lifetime = std::get<2>(sigma_info);
-  
-  auto lambda_info = GetParticleInfo(pdg, "Lambda0");
-  double lambda_mass = std::get<0>(lambda_info);
-  int lambda_pdgID = std::get<1>(lambda_info);
-  double lambda_lifetime = std::get<2>(lambda_info);
-
-  auto neutron_info = GetParticleInfo(pdg, "neutron");
-  double neutron_mass = std::get<0>(neutron_info);
-  int neutron_pdgID = std::get<1>(neutron_info);
-
-  auto pi0_info = GetParticleInfo(pdg, "pi0");
-  double pi0_mass = std::get<0>(pi0_info);
-  int pi0_pdgID = std::get<1>(pi0_info);
-  double pi0_lifetime = std::get<2>(pi0_info);
-
-  auto photon_info = GetParticleInfo(pdg, "gamma");
-  double photon_mass = std::get<0>(photon_info);
-  int photon_pdgID = std::get<1>(photon_info);
-
-  for (events_parsed = 0; events_parsed < n_events; events_parsed++) {
-
-    //Set the event number
-    evt.set_event_number(events_parsed);
-
-    // FourVector(px,py,pz,e,pdgid,status)
-    // type 4 is beam
-    // pdgid 11 - electron
-    // pdgid 2212 - proton
-    GenParticlePtr p1 =
-        std::make_shared<GenParticle>(FourVector(0.0, 0.0, 10.0, 10.0), 11, 4);
-    GenParticlePtr p2 = std::make_shared<GenParticle>(
-        FourVector(0.0, 0.0, 0.0, 0.938), 2212, 4);
-
-    // Define momentum with respect to EIC proton beam direction
-    Double_t sigma_p     = r1->Uniform(p_min, p_max);
-    Double_t sigma_phi   = r1->Uniform(0.0, 2.0 * M_PI);
-    Double_t sigma_th    = r1->Uniform(theta_min/1000., theta_max/1000.); // Divide by 1000 for radians
-    Double_t sigma_px    = sigma_p * TMath::Cos(sigma_phi) * TMath::Sin(sigma_th);
-    Double_t sigma_py    = sigma_p * TMath::Sin(sigma_phi) * TMath::Sin(sigma_th);
-    Double_t sigma_pz    = sigma_p * TMath::Cos(sigma_th);
-    Double_t sigma_E     = TMath::Sqrt(sigma_p*sigma_p + sigma_mass*sigma_mass);
-    
-    
-    TVector3 sigma_pvec(sigma_px, sigma_py, sigma_pz);
-    
-    double cross_angle = -25./1000.; // in Rad
-    TVector3 pbeam_dir(TMath::Sin(cross_angle), 0, TMath::Cos(cross_angle)); //proton beam direction
-    sigma_pvec.RotateY(cross_angle); // Theta is returned positive, beam in negative X
-
-    // type 2 is state that will decay
-    GenParticlePtr p_sigma = std::make_shared<GenParticle>(
-        FourVector(sigma_pvec.X(), sigma_pvec.Y(), sigma_pvec.Z(), sigma_E), sigma_pdgID, 2 );
-    // Generating sigma particle, will be generated at origin
-        // Must have input electron + proton for vertex
-        GenVertexPtr sigma_initial_vertex = std::make_shared<GenVertex>();
-        sigma_initial_vertex->add_particle_in(p1);
-        sigma_initial_vertex->add_particle_in(p2);
-        sigma_initial_vertex->add_particle_out(p_sigma);
-        evt.add_vertex(sigma_initial_vertex);
-
-        // Generate lambda + gamma in sigma rest frame
-        TLorentzVector lambda_rest, gamma_rest;
-
-        // Generating uniformly along a sphere
-        double cost_lambda_rest = r1->Uniform(-1,1);
-        double th_lambda_rest = TMath::ACos(cost_lambda_rest);
-        double sint_lambda_rest = TMath::Sin(th_lambda_rest);
-
-        double phi_lambda_rest = r1->Uniform(-1.*TMath::Pi(),1.*TMath::Pi());
-        double cosp_lambda_rest = TMath::Cos(phi_lambda_rest);
-        double sinp_lambda_rest = TMath::Sin(phi_lambda_rest);
-
-        // Calculate energy of each particle in the sigma rest frame
-        // See problem 3.19 in Introduction to Elementary Particles, 2nd edition by D. Griffiths
-        double E_lambda_rest = (-TMath::Power(photon_mass, 2.) + TMath::Power(sigma_mass, 2.) + TMath::Power(lambda_mass, 2.) ) / (2. * sigma_mass) ;
-        double E_gamma_rest = (-TMath::Power(lambda_mass, 2.) + TMath::Power(sigma_mass, 2.) + TMath::Power(photon_mass, 2.) ) / (2. * sigma_mass) ;
-
-        // Both particles will have the same momentum, so just use lambda variables
-        double momentum_rest = TMath::Sqrt( E_lambda_rest*E_lambda_rest - lambda_mass*lambda_mass );
-
-        lambda_rest.SetE(E_lambda_rest);
-        lambda_rest.SetPx( momentum_rest * sint_lambda_rest * cosp_lambda_rest );
-        lambda_rest.SetPy( momentum_rest * sint_lambda_rest * sinp_lambda_rest );
-        lambda_rest.SetPz( momentum_rest * cost_lambda_rest );
-
-        gamma_rest.SetE(E_gamma_rest);
-        gamma_rest.SetPx( -lambda_rest.Px() );
-        gamma_rest.SetPy( -lambda_rest.Py() );
-        gamma_rest.SetPz( -lambda_rest.Pz() );
-
-        // Boost lambda & pion to lab frame
-        TLorentzVector sigma_lab(sigma_pvec.X(), sigma_pvec.Y(), sigma_pvec.Z(), sigma_E);
-        TVector3 sigma_boost = sigma_lab.BoostVector();
-        TLorentzVector lambda_lab, gamma_lab;
-        lambda_lab = lambda_rest;
-        lambda_lab.Boost(sigma_boost);
-        gamma_lab = gamma_rest;
-        gamma_lab.Boost(sigma_boost);
-        
-    // Calculating position for sigma decay
-    TVector3 sigma_unit = sigma_lab.Vect().Unit();
-    double sigma_decay_length = GetDecayLength(r1, sigma_lifetime, sigma_mass, sigma_lab.P());
-    TVector3 sigma_decay_position = sigma_unit * sigma_decay_length;
-    double sigma_decay_time = sigma_decay_length / sigma_lab.Beta() ; // Decay time in lab frame in length units (mm)
-  
-    // Generating vertex for sigma decay
-    GenParticlePtr p_lambda = std::make_shared<GenParticle>(
-      FourVector(lambda_lab.Px(), lambda_lab.Py(), lambda_lab.Pz(), lambda_lab.E()), lambda_pdgID, 2 );
-
-    GenParticlePtr p_gamma = std::make_shared<GenParticle>(
-      FourVector(gamma_lab.Px(), gamma_lab.Py(), gamma_lab.Pz(), gamma_lab.E()), photon_pdgID, 1 );
-
-    GenVertexPtr v_sigma_decay = std::make_shared<GenVertex>(FourVector(sigma_decay_position.X(), sigma_decay_position.Y(), sigma_decay_position.Z(), sigma_decay_time));
-    v_sigma_decay->add_particle_in(p_sigma);
-    v_sigma_decay->add_particle_out(p_lambda);
-    v_sigma_decay->add_particle_out(p_gamma);
-
-    evt.add_vertex(v_sigma_decay);
-
-    // Generate neutron + pi0 in lambda rest frame
-    TLorentzVector neutron_rest, pi0_rest;
-
-    // Generating uniformly along a sphere
-    double cost_neutron_rest = r1->Uniform(-1,1);
-    double th_neutron_rest = TMath::ACos(cost_neutron_rest);
-    double sint_neutron_rest = TMath::Sin(th_neutron_rest);
-
-    double phi_neutron_rest = r1->Uniform(-1.*TMath::Pi(),1.*TMath::Pi());
-    double cosp_neutron_rest = TMath::Cos(phi_neutron_rest);
-    double sinp_neutron_rest = TMath::Sin(phi_neutron_rest);
-
-    // Calculate energy of each particle in the lambda rest frame
-    // See problem 3.19 in Introduction to Elementary Particles, 2nd edition by D. Griffiths
-    double E_neutron_rest = (-TMath::Power(pi0_mass, 2.) + TMath::Power(lambda_mass, 2.) + TMath::Power(neutron_mass, 2.) ) / (2. * lambda_mass) ;
-    double E_pi0_rest = (-TMath::Power(neutron_mass, 2.) + TMath::Power(lambda_mass, 2.) + TMath::Power(pi0_mass, 2.) ) / (2. * lambda_mass) ;
-
-    // Both particles will have the same momentum, so just use neutron variables
-    momentum_rest = TMath::Sqrt( E_neutron_rest*E_neutron_rest - neutron_mass*neutron_mass );
-
-    neutron_rest.SetE(E_neutron_rest);
-    neutron_rest.SetPx( momentum_rest * sint_neutron_rest * cosp_neutron_rest );
-    neutron_rest.SetPy( momentum_rest * sint_neutron_rest * sinp_neutron_rest );
-    neutron_rest.SetPz( momentum_rest * cost_neutron_rest );
-
-    pi0_rest.SetE(E_pi0_rest);
-    pi0_rest.SetPx( -neutron_rest.Px() );
-    pi0_rest.SetPy( -neutron_rest.Py() );
-    pi0_rest.SetPz( -neutron_rest.Pz() );
-
-    // Boost neutron & pion to lab frame
-    TVector3 lambda_boost = lambda_lab.BoostVector();
-    TLorentzVector neutron_lab, pi0_lab;  
-    neutron_lab = neutron_rest; 
-    neutron_lab.Boost(lambda_boost);
-    pi0_lab = pi0_rest;
-    pi0_lab.Boost(lambda_boost);
-
-    // Calculating position for lambda decay
-    TVector3 lambda_unit = lambda_lab.Vect().Unit();
-    double lambda_decay_length = GetDecayLength(r1, lambda_lifetime, lambda_mass, lambda_lab.P());
-    TVector3 lambda_decay_position = lambda_unit * lambda_decay_length;
-    double lambda_decay_time = lambda_decay_length / lambda_lab.Beta() ; // Decay time in lab frame in length units (mm)
-  
-    // Generating vertex for lambda decay
-    GenParticlePtr p_neutron = std::make_shared<GenParticle>(
-      FourVector(neutron_lab.Px(), neutron_lab.Py(), neutron_lab.Pz(), neutron_lab.E()), neutron_pdgID, 1 );
-
-    GenParticlePtr p_pi0 = std::make_shared<GenParticle>(
-      FourVector(pi0_lab.Px(), pi0_lab.Py(), pi0_lab.Pz(), pi0_lab.E()), pi0_pdgID, 2 );
-
-    GenVertexPtr v_lambda_decay = std::make_shared<GenVertex>(FourVector(lambda_decay_position.X(), lambda_decay_position.Y(), lambda_decay_position.Z(), lambda_decay_time));
-    v_lambda_decay->add_particle_in(p_lambda);
-    v_lambda_decay->add_particle_out(p_neutron);
-    v_lambda_decay->add_particle_out(p_pi0);
-
-    evt.add_vertex(v_lambda_decay);
-
-    // Generate two photons from pi0 decay
-    TLorentzVector gamma1_rest, gamma2_rest;
-
-    // Generating uniformly along a sphere
-    double cost_gamma1_rest = r1->Uniform(-1,1);
-    double th_gamma1_rest = TMath::ACos(cost_gamma1_rest);
-    double sint_gamma1_rest = TMath::Sin(th_gamma1_rest);
-
-    double phi_gamma1_rest = r1->Uniform(-1.*TMath::Pi(),1.*TMath::Pi());
-    double cosp_gamma1_rest = TMath::Cos(phi_gamma1_rest);
-    double sinp_gamma1_rest = TMath::Sin(phi_gamma1_rest);
-
-    // Photons are massless so they each get equal energies
-    gamma1_rest.SetE(pi0_mass/2.);
-    gamma1_rest.SetPx( (pi0_mass/2.)*sint_gamma1_rest*cosp_gamma1_rest );
-    gamma1_rest.SetPy( (pi0_mass/2.)*sint_gamma1_rest*sinp_gamma1_rest );
-    gamma1_rest.SetPz( (pi0_mass/2.)*cost_gamma1_rest );
-
-    gamma2_rest.SetE(pi0_mass/2.);
-    gamma2_rest.SetPx( -gamma1_rest.Px() );
-    gamma2_rest.SetPy( -gamma1_rest.Py() );
-    gamma2_rest.SetPz( -gamma1_rest.Pz() );
-
-    // Boost neutron & pion to lab frame
-    TVector3 pi0_boost = pi0_lab.BoostVector();
-    TLorentzVector gamma1_lab, gamma2_lab;
-    gamma1_lab = gamma1_rest; 
-    gamma1_lab.Boost(pi0_boost);
-    gamma2_lab = gamma2_rest; 
-    gamma2_lab.Boost(pi0_boost);
-  
-    GenParticlePtr p_gamma1 = std::make_shared<GenParticle>(
-      FourVector(gamma1_lab.Px(), gamma1_lab.Py(), gamma1_lab.Pz(), gamma1_lab.E()), photon_pdgID, 1 );
-
-    GenParticlePtr p_gamma2 = std::make_shared<GenParticle>(
-      FourVector(gamma2_lab.Px(), gamma2_lab.Py(), gamma2_lab.Pz(), gamma2_lab.E()), photon_pdgID, 1 );
-
-    // Generate pi0 at same position as the lambda. Approximating pi0 decay as instantaneous
-    GenVertexPtr v_pi0_decay = std::make_shared<GenVertex>(FourVector(lambda_decay_position.X(), lambda_decay_position.Y(), lambda_decay_position.Z(), lambda_decay_time));
-    v_pi0_decay->add_particle_in(p_pi0);
-    v_pi0_decay->add_particle_out(p_gamma1);
-    v_pi0_decay->add_particle_out(p_gamma2);
-
-    //std::cout<<  lambda_pvec.Angle(pbeam_dir) << " " << neutron_lab.Angle(pbeam_dir) << " " << gamma1_lab.Angle(pbeam_dir) << " " << gamma2_lab.Angle(pbeam_dir) << std::endl;
-    
-    evt.add_vertex(v_pi0_decay);
-
-    if (events_parsed == 0) {
-      std::cout << "First event: " << std::endl;
-      Print::listing(evt);
-    }
-    double zdc_z=35800;
-    TVector3 extrap_gamma=sigma_decay_position+gamma_lab.Vect()*((zdc_z-pbeam_dir.Dot(sigma_decay_position))/(pbeam_dir.Dot(gamma_lab.Vect())));
-    TVector3 extrap_neutron=lambda_decay_position+neutron_lab.Vect()*((zdc_z-pbeam_dir.Dot(lambda_decay_position))/(pbeam_dir.Dot(neutron_lab.Vect())));
-    TVector3 extrap_gamma1=lambda_decay_position+gamma1_lab.Vect()*((zdc_z-pbeam_dir.Dot(lambda_decay_position))/(pbeam_dir.Dot(gamma1_lab.Vect())));
-    TVector3 extrap_gamma2=lambda_decay_position+gamma2_lab.Vect()*((zdc_z-pbeam_dir.Dot(lambda_decay_position))/(pbeam_dir.Dot(gamma2_lab.Vect())));
-    if (extrap_neutron.Angle(pbeam_dir)<0.004 && extrap_gamma1.Angle(pbeam_dir)<0.004 && extrap_gamma2.Angle(pbeam_dir)<0.004 && extrap_gamma.Angle(pbeam_dir)<0.004 && lambda_decay_position.Dot(pbeam_dir)<zdc_z){
-      hepmc_output.write_event(evt);
-      accepted_events ++;
-    }
-    if (events_parsed % 1000 == 0) {
-      std::cout << "Event: " << events_parsed << " ("<<accepted_events<<" accepted)"<< std::endl;
-    }
-    evt.clear();
-  }
-  hepmc_output.close();
-
-  std::cout << "Events generated: " << events_parsed << " ("<<accepted_events<<" accepted)"<< std::endl;
-}
diff --git a/benchmarks/sigma/analysis/sigma_plots.py b/benchmarks/sigma/analysis/sigma_plots.py
deleted file mode 100644
index 1dbf47e2d50fb848f13b619e83051f23dee9fa67..0000000000000000000000000000000000000000
--- a/benchmarks/sigma/analysis/sigma_plots.py
+++ /dev/null
@@ -1,480 +0,0 @@
-import numpy as np, pandas as pd, matplotlib.pyplot as plt, matplotlib as mpl, awkward as ak, sys
-import mplhep as hep
-hep.style.use("CMS")
-
-plt.rcParams['figure.facecolor']='white'
-plt.rcParams['savefig.facecolor']='white'
-plt.rcParams['savefig.bbox']='tight'
-
-plt.rcParams["figure.figsize"] = (7, 7)
-
-outdir=sys.argv[1]+"/"
-try:
-    import os
-    os.mkdir(outdir[:-1])
-except:
-    pass
-import uproot as ur
-arrays_sim={}
-momenta=100, 125, 150, 175,200,225,250,275
-for p in momenta:
-    filename=f'sim_output/sigma/epic_zdc_sipm_on_tile_only_rec_sigma_dec_{p}GeV.edm4hep.root'
-    print("opening file", filename)
-    events = ur.open(filename+':events')
-    arrays_sim[p] = events.arrays()[:-1] #remove last event, which for some reason is blank
-    import gc
-    gc.collect()
-    print("read", filename)
-
-def gauss(x, A,mu, sigma):
-    return A * np.exp(-(x-mu)**2/(2*sigma**2))
-
-#keep track of the number of clusters per event
-nclusters={}
-
-for p in momenta:
-    plt.figure()
-    nclusters[p]=[]
-    for i in range(len(arrays_sim[p])):
-        nclusters[p].append(len(arrays_sim[p]["HcalFarForwardZDCClusters.position.x"][i]))
-    nclusters[p]=np.array(nclusters[p])
-    plt.hist(nclusters[p],bins=20, range=(0,20))
-    plt.xlabel("number of clusters")
-    plt.yscale('log')
-    plt.title(f"$p_\Sigma={p}$ GeV")
-    plt.ylim(1)
-    plt.savefig(outdir+f"nclust_{p}GeV_recon.pdf")
-    print("saved file ", outdir+f"nclust_{p}GeV_recon.pdf")
-
-
-
-pt_truth={}
-theta_truth={}
-
-for p in momenta:
-    #get the truth value of theta* and pt*
-    px=arrays_sim[p]["MCParticles.momentum.x"][:,2]
-    py=arrays_sim[p]["MCParticles.momentum.y"][:,2]
-    pz=arrays_sim[p]["MCParticles.momentum.z"][:,2]
-    tilt=-0.025
-    pt_truth[p]=np.hypot(px*np.cos(tilt)-pz*np.sin(tilt), py)
-    theta_truth[p]=np.arctan2(pt_truth[p],pz*np.cos(tilt)+px*np.sin(tilt))
-
-#create an array with the same shape as the cluster-level arrays
-is_neutron_cand={}
-for p in momenta:
-    is_neutron_cand[p]=(0*arrays_sim[p][f"HcalFarForwardZDCClusters.energy"]).to_list()
-    
-    #largest_eigenvalues
-    for i in range(len(arrays_sim[p])):
-        pars=arrays_sim[p]["_HcalFarForwardZDCClusters_shapeParameters"][i]
-        index_of_max=-1
-        max_val=0
-        eigs=[]
-        #Must make sure this doesn't get messed up if someone changes the number of shape parameters in EICrecon.
-        nClust=nclusters[p][i]
-        nShapePars=len(pars)//nClust
-        for j in range(nClust):
-            largest_eigenvalue=max(pars[nShapePars*j+4:nShapePars*j+7])
-            eigs.append(largest_eigenvalue)
-            if(largest_eigenvalue>max_val):
-                max_val=largest_eigenvalue
-                index_of_max=j
-        if index_of_max >=0:
-            is_neutron_cand[p][i][index_of_max]=1
-        eigs.sort()
-        
-    is_neutron_cand[p]=ak.Array(is_neutron_cand[p])
-
-import ROOT
-
-lambda_mass=1.115683
-pi0_mass=0.1349768
-pt_recon_corr={}
-theta_recon_corr={}
-mass_recon_corr={}
-mass_lambda_recon_corr={}
-mass_pi0_recon_corr={}
-pi0_converged={}
-zvtx_recon={}
-
-#run this event-by-event:
-maxZ=35800
-for p in momenta:
-    pt_recon_corr[p]=[]
-    theta_recon_corr[p]=[]
-    mass_recon_corr[p]=[]
-    mass_lambda_recon_corr[p]=[]
-    mass_pi0_recon_corr[p]=[]
-    zvtx_recon[p]=[]
-    for evt in range(len(arrays_sim[p])):
-        if nclusters[p][evt]!=4:
-            nan=-1
-            pt_recon_corr[p].append(nan)
-            theta_recon_corr[p].append(nan)
-            mass_recon_corr[p].append(nan)
-            mass_lambda_recon_corr[p].append(nan)
-            mass_pi0_recon_corr[p].append(nan)
-            zvtx_recon[p].append(nan)
-            continue
-        xc=arrays_sim[p][f"HcalFarForwardZDCClusters.position.x"][evt]
-        yc=arrays_sim[p][f"HcalFarForwardZDCClusters.position.y"][evt]
-        zc=arrays_sim[p][f"HcalFarForwardZDCClusters.position.z"][evt]
-        E=arrays_sim[p][f"HcalFarForwardZDCClusters.energy"][evt]
-        
-        #apply correction to the neutron candidates only
-        A,B,C=-0.0756, -1.91,  2.30
-        neutron_corr=(1-is_neutron_cand[p][evt])+is_neutron_cand[p][evt]/(1+A+B/np.sqrt(E)+C/E)
-        E=E*neutron_corr
-
-        pabs=np.sqrt(E**2-is_neutron_cand[p][evt]*.9406**2)
-        tilt=-0.025
-        xcp=xc*np.cos(tilt)-zc*np.sin(tilt)
-        ycp=yc
-        zcp=zc*np.cos(tilt)+xc*np.sin(tilt)
-        
-        #search for the combination of photons that would give the best lambda mass
-        pt_best=-999
-        theta_best=-999
-        mass_lambda_best=-999
-        mass_sigma_best=-999
-        mass_pi0_best=-999
-        zvtx_best=-999
-        for hypothesis in range(4):
-            if is_neutron_cand[p][evt][hypothesis]:
-                continue
-            
-            xvtx=0
-            yvtx=0
-            zvtx=0
-            #find the vertex position that reconstructs the pi0 mass
-            for iteration in range(20):
-                tot=ROOT.TLorentzVector(0,0,0,0)
-                Lambda=ROOT.TLorentzVector(0,0,0,0)
-                pi0=ROOT.TLorentzVector(0,0,0,0)
-
-                for i in range(4):
-
-                    if i!=hypothesis:
-                        ux=xcp[i]-xvtx
-                        uy=ycp[i]-yvtx
-                        uz=zcp[i]-zvtx
-                    else:
-                        ux=xcp[i]
-                        uy=ycp[i]
-                        uz=zcp[i]
-                    u=np.sqrt(ux**2+uy**2+uz**2)
-                    ux/=u
-                    uy/=u
-                    uz/=u
-
-                    P=ROOT.TLorentzVector(pabs[i]*ux, pabs[i]*uy, pabs[i]*uz, E[i])
-                    tot+=P
-                    if not is_neutron_cand[p][evt][i] and i!=hypothesis:
-                        pi0+=P
-                    if i!=hypothesis:
-                        Lambda+=P
-                alpha=1
-                if iteration==0:
-                    zeta=1/2
-                    zvtx=maxZ*np.power(zeta,alpha)
-                    xvtx=Lambda.X()/Lambda.Z()*zvtx
-                    yvtx=Lambda.Y()/Lambda.Z()*zvtx
-                else :
-                    s=2*(pi0.M()<pi0_mass)-1
-                    zeta=np.power(zvtx/maxZ, 1/alpha)
-                    zeta=zeta+s*1/2**(1+iteration)
-                    zvtx=maxZ*np.power(zeta,alpha)
-                    xvtx=Lambda.X()/Lambda.Z()*zvtx
-                    yvtx=Lambda.Y()/Lambda.Z()*zvtx
-
-            if abs(Lambda.M()-lambda_mass)< abs(mass_lambda_best-lambda_mass):
-                pt_best=tot.Pt()
-                theta_best=tot.Theta()
-                mass_lambda_best=Lambda.M()
-                mass_sigma_best=tot.M()
-                mass_pi0_best=pi0.M()
-                zvtx_best=zvtx
-                
-        pt_recon_corr[p].append(pt_best)
-        theta_recon_corr[p].append(theta_best)
-        mass_recon_corr[p].append(mass_sigma_best)
-        mass_lambda_recon_corr[p].append(mass_lambda_best)
-        mass_pi0_recon_corr[p].append(mass_pi0_best)
-        zvtx_recon[p].append(zvtx_best)
-    pt_recon_corr[p]=ak.Array(pt_recon_corr[p])
-    theta_recon_corr[p]=ak.Array(theta_recon_corr[p])
-    mass_recon_corr[p]=ak.Array(mass_recon_corr[p])
-    mass_lambda_recon_corr[p]=ak.Array(mass_lambda_recon_corr[p])
-    mass_pi0_recon_corr[p]=ak.Array(mass_pi0_recon_corr[p])
-    zvtx_recon[p]=ak.Array(zvtx_recon[p])
-        
-#now make plots
-
-#reconstructed vertex position plot
-fig,axs=plt.subplots(1,3, figsize=(24, 8))
-plt.sca(axs[0])
-plt.title(f"$E_{{\\Sigma}}=100-275$ GeV")
-x=[]
-y=[]
-for p in momenta:
-    accept=(nclusters[p]==4)# &(pi0_converged[p])
-    x+=list(theta_truth[p][accept]*1000)
-    y+=list(theta_recon_corr[p][accept]*1000)
-#print(x)
-plt.scatter(x,y)
-plt.xlabel("$\\theta^{*\\rm truth}_{\\Sigma}$ [mrad]")
-plt.ylabel("$\\theta^{*\\rm recon}_{\\Sigma}$ [mrad]")
-plt.xlim(0,3.2)
-plt.ylim(0,3.2)
-
-plt.sca(axs[1])
-plt.title(f"$E_{{\\Sigma}}=100-275$ GeV")
-y,x,_=plt.hist(y-np.array(x), bins=50, range=(-1,1))
-bc=(x[1:]+x[:-1])/2
-
-from scipy.optimize import curve_fit
-slc=abs(bc)<0.6
-fnc=gauss
-p0=[100, 0, 0.5]
-coeff, var_matrix = curve_fit(fnc, bc[slc], y[slc], p0=p0,
-                                 sigma=np.sqrt(y[slc])+(y[slc]==0))
-x=np.linspace(-1, 1)
-plt.plot(x, gauss(x, *coeff), color='tab:orange')
-plt.xlabel("$\\theta^{*\\rm recon}_{\\Sigma}-\\theta^{*\\rm truth}_{\\Sigma}$ [mrad]")
-plt.ylabel("events")
-
-plt.sca(axs[2])
-sigmas=[]
-dsigmas=[]
-xvals=[]
-for p in momenta:
-    
-    accept=(nclusters[p]==4)
-    y,x=np.histogram((theta_recon_corr[p]-theta_truth[p])[accept]*1000, bins=100, range=(-0.5,0.5))
-    bc=(x[1:]+x[:-1])/2
-
-    from scipy.optimize import curve_fit
-    slc=abs(bc)<0.3
-    fnc=gauss
-    p0=(100, 0, 0.15)
-    #print(bc[slc],y[slc])
-    sigma=np.sqrt(y[slc])+(y[slc]==0)
-    try:
-        coeff, var_matrix = curve_fit(fnc, list(bc[slc]), list(y[slc]), p0=p0,sigma=list(sigma))
-        sigmas.append(np.abs(coeff[2]))
-        dsigmas.append(np.sqrt(var_matrix[2][2]))
-        xvals.append(p)
-    except:
-        print(f"fit failed for p={p}")
-print(xvals)
-print(sigmas)
-plt.ylim(0, 0.3)
-
-plt.errorbar(xvals, sigmas, dsigmas, ls='', marker='o', color='k')
-x=np.linspace(100, 275, 100)
-plt.plot(x, 3/np.sqrt(x), color='tab:orange')
-plt.text(170, .23, "YR requirement:\n   3 mrad/$\\sqrt{E}$")
-plt.xlabel("$E_{\\Sigma}$ [GeV]")
-plt.ylabel("$\\sigma[\\theta^*_{\\Sigma}]$ [mrad]")
-plt.tight_layout()
-plt.savefig(outdir+"thetastar_recon.pdf")
-
-#reconstructed vertex position plot
-fig,axs=plt.subplots(1,3, figsize=(24, 8))
-plt.sca(axs[0])
-plt.title(f"$E_{{\\Sigma}}=100-275$ GeV")
-x=[]
-y=[]
-for p in momenta:
-    accept=(nclusters[p]==4)&(abs(mass_pi0_recon_corr[p]-pi0_mass)<.01)
-    tilt=-0.025
-    x+=list(arrays_sim[p]['MCParticles.vertex.z'][:,5][accept]*np.cos(tilt)/1000
-            +np.sin(tilt)*arrays_sim[p]['MCParticles.vertex.z'][:,5][accept]/1000)
-    y+=list(zvtx_recon[p][accept]/1000)
-plt.scatter(x,y)
-#print(x,y)
-plt.xlabel("$z^{\\rm truth}_{\\rm vtx}$ [m]")
-plt.ylabel("$z^{\\rm recon}_{\\rm vtx}$  [m]")
-plt.xlim(0,40)
-plt.ylim(0,40)
-
-plt.sca(axs[1])
-plt.title(f"$E_{{\\Sigma}}=100-275$ GeV")
-y,x,_=plt.hist(y-np.array(x), bins=50, range=(-10,10))
-bc=(x[1:]+x[:-1])/2
-
-from scipy.optimize import curve_fit
-slc=abs(bc)<5
-fnc=gauss
-p0=[100, 0, 1]
-coeff, var_matrix = curve_fit(fnc, bc[slc], y[slc], p0=p0,
-                                 sigma=np.sqrt(y[slc])+(y[slc]==0))
-x=np.linspace(-5, 5)
-plt.plot(x, gauss(x, *coeff), color='tab:orange')
-plt.xlabel("$z^{*\\rm recon}_{\\rm vtx}-z^{*\\rm truth}_{\\rm vtx}$ [m]")
-plt.ylabel("events")
-
-plt.sca(axs[2])
-sigmas=[]
-dsigmas=[]
-xvals=[]
-for p in momenta:
-    
-    accept=(nclusters[p]==4)&(abs(mass_pi0_recon_corr[p]-pi0_mass)<.01)
-    a=list((zvtx_recon[p]-arrays_sim[p]['MCParticles.vertex.z'][:,5])[accept]/1000)
-    y,x=np.histogram(a, bins=100, range=(-10,10))
-    bc=(x[1:]+x[:-1])/2
-
-    from scipy.optimize import curve_fit
-    slc=abs(bc)<5
-    fnc=gauss
-    p0=(100, 0, 1)
-    #print(bc[slc],y[slc])
-    sigma=np.sqrt(y[slc])+(y[slc]==0)
-    try:
-        coeff, var_matrix = curve_fit(fnc, list(bc[slc]), list(y[slc]), p0=p0,sigma=list(sigma))
-        sigmas.append(abs(coeff[2]))
-        dsigmas.append(np.sqrt(var_matrix[2][2]))
-        xvals.append(p)
-    except:
-        print(f"fit failed for p={p}")
-plt.ylim(0, 3)
-
-plt.errorbar(xvals, sigmas, dsigmas, ls='', marker='o', color='k')
-x=np.linspace(100, 275, 100)
-
-avg=np.sum(sigmas/np.array(dsigmas)**2)/np.sum(1/np.array(dsigmas)**2)
-plt.axhline(avg, color='tab:orange')
-plt.text(150, 1.25,f"$\\sigma\\approx${avg:.1f} m")
-
-plt.xlabel("$E_{\\Sigma}$ [GeV]")
-plt.ylabel("$\\sigma[z_{\\rm vtx}]$ [m]")
-plt.tight_layout()
-plt.savefig(outdir+"zvtx_recon.pdf")
-        
-#lambda mass reconstruction
-fig,axs=plt.subplots(1,2, figsize=(16, 8))
-plt.sca(axs[0])
-lambda_mass=1.115683
-vals=[]
-for p in momenta:
-    accept=(nclusters[p]==4)&(abs(mass_pi0_recon_corr[p]-pi0_mass)<.01)
-    vals+=list(mass_lambda_recon_corr[p][accept])
-
-y,x,_= plt.hist(vals, bins=100, range=(0.9, 1.3))
-bc=(x[1:]+x[:-1])/2
-plt.axvline(lambda_mass, ls='--', color='tab:green', lw=3)
-plt.text(lambda_mass+.01, np.max(y)*1.05, "PDG mass", color='tab:green')
-plt.xlabel("$m_{\\Lambda}^{\\rm recon}$ [GeV]")
-plt.ylim(0, np.max(y)*1.2)
-plt.xlim(0.9, 1.3)
-
-from scipy.optimize import curve_fit
-slc=abs(bc-lambda_mass)<0.05
-fnc=gauss
-p0=[100, lambda_mass, 0.03]
-coeff, var_matrix = curve_fit(fnc, bc[slc], y[slc], p0=p0,
-                                 sigma=np.sqrt(y[slc])+(y[slc]==0))
-x=np.linspace(0.8, 1.3, 200)
-plt.plot(x, gauss(x, *coeff), color='tab:orange')
-print(coeff[2], np.sqrt(var_matrix[2][2]))
-plt.xlabel("$m^{\\rm recon}_{\\Lambda}$ [GeV]")
-plt.ylabel("events")
-plt.title(f"$E_{{\\Sigma}}=100-275$ GeV")
-
-plt.sca(axs[1])
-xvals=[]
-sigmas=[]
-dsigmas=[]
-for p in momenta:
-    accept=(nclusters[p]==4)&(abs(mass_pi0_recon_corr[p]-pi0_mass)<.01)
-    y,x= np.histogram(mass_lambda_recon_corr[p][accept], bins=100, range=(0.6,1.4))
-    bc=(x[1:]+x[:-1])/2
-
-    from scipy.optimize import curve_fit
-    slc=abs(bc-lambda_mass)<0.05
-    fnc=gauss
-    p0=[100, lambda_mass, 0.03]
-    try:
-        coeff, var_matrix = curve_fit(fnc, list(bc[slc]), list(y[slc]), p0=p0,
-                                       sigma=list(np.sqrt(y[slc])+(y[slc]==0)))
-        x=np.linspace(0.8, 1.3, 200)
-        sigmas.append(coeff[2])
-        dsigmas.append(np.sqrt(var_matrix[2][2]))
-        xvals.append(p)
-    except:
-        print("fit failed")
-    
-plt.errorbar(xvals, sigmas, dsigmas, ls='', marker='o', color='k')
-avg=np.sum(sigmas/np.array(dsigmas)**2)/np.sum(1/np.array(dsigmas)**2)
-plt.axhline(avg, color='tab:orange')
-plt.text(150, 0.01,f"$\\sigma\\approx${avg*1000:.0f} MeV")
-plt.xlabel("$E_{\\Sigma}$ [GeV]")
-plt.ylabel("$\\sigma[m_{\\Lambda}]$ [GeV]")
-plt.ylim(0, 0.02)
-plt.tight_layout()
-plt.savefig(outdir+"lambda_mass_rec_from_sigma_decay.pdf")
-
-#sigma mass reconstruction
-p=100
-fig,axs=plt.subplots(1,2, figsize=(16, 8))
-plt.sca(axs[0])
-sigma_mass=1.192
-vals=[]
-for p in momenta:
-    accept=(nclusters[p]==4)&(abs(mass_pi0_recon_corr[p]-pi0_mass)<.01)
-    vals+=list(mass_recon_corr[p][accept])
-
-y,x,_= plt.hist(vals, bins=100, range=(1.0, 1.4))
-bc=(x[1:]+x[:-1])/2
-plt.axvline(sigma_mass, ls='--', color='tab:green', lw=3)
-plt.text(sigma_mass+.01, np.max(y)*1.05, "PDG mass", color='tab:green')
-plt.xlabel("$m_{\\Sigma}^{\\rm recon}$ [GeV]")
-plt.ylim(0, np.max(y)*1.2)
-plt.xlim(1.0, 1.45)
-
-from scipy.optimize import curve_fit
-slc=abs(bc-sigma_mass)<0.02
-fnc=gauss
-p0=[100, sigma_mass, 0.03]
-coeff, var_matrix = curve_fit(fnc, bc[slc], y[slc], p0=p0,
-                                 sigma=np.sqrt(y[slc])+(y[slc]==0))
-x=np.linspace(0.8, 1.3, 200)
-plt.plot(x, gauss(x, *coeff), color='tab:orange')
-print(coeff[2], np.sqrt(var_matrix[2][2]))
-plt.xlabel("$m^{\\rm recon}_{\\Sigma}$ [GeV]")
-plt.ylabel("events")
-plt.title(f"$E_{{\\Sigma}}=100-275$ GeV")
-
-plt.sca(axs[1])
-xvals=[]
-sigmas=[]
-dsigmas=[]
-for p in momenta:
-    accept=(nclusters[p]==4)&(abs(mass_pi0_recon_corr[p]-pi0_mass)<.01)
-    y,x= np.histogram(mass_recon_corr[p][accept], bins=100, range=(1.0,1.4))
-    bc=(x[1:]+x[:-1])/2
-
-    from scipy.optimize import curve_fit
-    slc=abs(bc-sigma_mass)<0.02
-    fnc=gauss
-    p0=[100, sigma_mass, 0.03]
-    try:
-        coeff, var_matrix = curve_fit(fnc, list(bc[slc]), list(y[slc]), p0=p0,
-                                       sigma=list(np.sqrt(y[slc])+(y[slc]==0)))
-        sigmas.append(abs(coeff[2]))
-        dsigmas.append(np.sqrt(var_matrix[2][2]))
-        xvals.append(p)
-    except:
-        print("fit failed")
-    
-plt.errorbar(xvals, sigmas, dsigmas, ls='', marker='o', color='k')
-avg=np.sum(sigmas/np.array(dsigmas)**2)/np.sum(1/np.array(dsigmas)**2)
-plt.axhline(avg, color='tab:orange')
-plt.text(150, 0.01,f"$\\sigma\\approx${avg*1000:.0f} MeV")
-plt.xlabel("$E_{\\Sigma}$ [GeV]")
-plt.ylabel("$\\sigma[m_{\\Sigma}]$ [GeV]")
-plt.ylim(0, 0.1)
-plt.tight_layout()
-plt.savefig(outdir+"sigma_mass_rec.pdf")
diff --git a/benchmarks/sigma/benchmark.json b/benchmarks/sigma/benchmark.json
deleted file mode 100644
index 7c475ddbaf393ea27bec5fbf4003953746b546af..0000000000000000000000000000000000000000
--- a/benchmarks/sigma/benchmark.json
+++ /dev/null
@@ -1,6 +0,0 @@
-{
-  "name": "Sigma0 in ZDC",
-  "title": "Sigma0 Benchmark",
-    "description": "Benchmark for measuring sigma0 reconstruction using its decay products in the ZDC",
-  "target": "0.8"
-}
diff --git a/benchmarks/sigma/config.yml b/benchmarks/sigma/config.yml
deleted file mode 100644
index 46845c37ce945ce5b0b85fd76212dada83bec2c7..0000000000000000000000000000000000000000
--- a/benchmarks/sigma/config.yml
+++ /dev/null
@@ -1,34 +0,0 @@
-sigma:simulate:
-  stage: simulate
-  extends: .phy_benchmark
-  needs: ["common:detector"]
-  parallel:
-    matrix:
-      - P: 100
-      - P: 125
-      - P: 150
-      - P: 175
-      - P: 200
-      - P: 225
-      - P: 250
-      - P: 275
-  timeout: 6 hours
-  script:
-    - snakemake --cores 1 sim_output/sigma/epic_zdc_sipm_on_tile_only_rec_sigma_dec_${P}GeV.edm4hep.root 
-  retry:
-    max: 2
-    when:
-      - runner_system_failure
-
-sigma:analyze:
-  stage: analyze
-  extends: .phy_benchmark
-  needs: ["sigma:simulate"]
-  script:
-    - snakemake --cores 1 results/epic_zdc_sipm_on_tile_only/sigma 
-
-sigma:results:
-  stage: collect
-  needs: ["sigma:analyze"]
-  script:
-    - ls -al