diff --git a/benchmarks/dis/analysis/kinematics_correlations.py b/benchmarks/dis/analysis/kinematics_correlations.py new file mode 100644 index 0000000000000000000000000000000000000000..df6d90f34ddeeafc191a2cf631e2a9fa0179d469 --- /dev/null +++ b/benchmarks/dis/analysis/kinematics_correlations.py @@ -0,0 +1,177 @@ +#!/usr/bin/env python +# coding: utf-8 + +import os +import numpy as np +import uproot as ur +import awkward as ak +import matplotlib.pyplot as plt +import matplotlib as mpl +import mplhep +import argparse + + + +parser = argparse.ArgumentParser() +parser.add_argument('--rec_file', type=str, help='Reconstructed track file.') +parser.add_argument('--ebeam', type=float, help='Electron beam energy.') +parser.add_argument('--pbeam', type=float, help='Proton (or ion) beam energy.') +parser.add_argument('--minq2', type=float, help='Minimum four-momentum transfer squared Q2.') +parser.add_argument('-o', dest='outdir', default='results/dis/', help='Output directory.') +args = parser.parse_args() +kwargs = vars(args) + +rec_file = args.rec_file +minq2 = int(args.minq2) +k = int(args.ebeam) +p = int(args.pbeam) + + + +#logarithmically spaced bins in Q2 and 𝑥 +Q2_bins = [0.40938507,0.64786184,1.025353587,1.626191868,2.581181894,4.091148983,6.478618696,10.25353599,16.26191868,25.81181894,40.91148983,64.78618696,102.5353599,162.6191868,258.1181894,409.1148983,647.8618696,1025.353599,1626.191868,2581.181894,4091.148983,6482.897648] +x_bins = [4.09385E-05,6.47862E-05,0.000102535,0.000162619,0.000258118,0.000409115,0.000647862,0.001025354,0.001626192,0.002581182,0.004091149,0.006478619,0.010253536,0.016261919,0.025811819,0.04091149,0.064786187,0.10253536,0.162619187,0.25811819,0.409114898,0.647861868,1.025257131] + + + +#function to construct Q2 correlation plots +def Q2correlation(minq2,method): #minq2 can be 1,10,100, or 1000; method can be 'E','DA', or 'JB' + + Q2values_Y = method_Q2values_dict['{}'.format(method)] #Q2 values of the given method, that are mapped onto the y axis + + Q2_List_T = Q2values_T['{}'.format(minq2)] #Truth Q2 values for given minq2, mapped along x axis + Q2_List_Y = Q2values_Y['{}'.format(minq2)] #method (E/DA/JB) Q2 values for given minq2, mapped along y axis + + T_len = ak.count(Q2_List_T,axis=0) #total number of events in Truth + Y_len = ak.count(Q2_List_Y,axis=0) #total number of events in method + + if T_len > Y_len: #if total number of events for Truth is greater + Y_boolean = ak.count(Q2_List_Y,axis=-1) >= 1 #boolean to filter ak.Arrays wrt single events in method + Q2_List_T_F = Q2_List_T[Y_boolean] #filtered Truth Q2 values + Q2_List_Y_F = Q2_List_Y[Y_boolean] #filtered method Q2 values + else: #if total number of events for method is greater + T_boolean = ak.count(Q2_List_T,axis=-1) >= 1 #boolean to filter ak.Arrays wrt single events in Truth + Q2_List_T_F = Q2_List_T[T_boolean] #filtered Truth Q2 values + Q2_List_Y_F = Q2_List_Y[T_boolean] #filtered method Q2 values + + T_Q2s = np.array(ak.flatten(Q2_List_T_F)) #Truth Q2 values, mapped along x axis + Y_Q2s = np.array(ak.flatten(Q2_List_Y_F)) #methos Q2 values, mapped along y axis + + #2-dimensional histogram, h + h, xedges, yedges = np.histogram2d(x=T_Q2s,y=Y_Q2s, bins=[Q2_bins,Q2_bins]) + + minq2_dict = {'1':2,'10':7,'100':12,'1000':17} #Q2 bin index at which minq2 starts + h[0:minq2_dict['{}'.format(minq2)]]=0 #ignore values before minq2 + + #normalization of h: + col_sum = ak.sum(h,axis=-1) #number of events in each (verticle) column + norm_h = [] #norm_h is the normalized matrix + norm_h_text = [] #display labels matrix + for i in range(len(col_sum)): + if col_sum[i] != 0: + norm_c = h[i]/col_sum[i] #normalized column = column values divide by sum of the column + else: + norm_c = h[i] + norm_h.append(norm_c) + norm_c_text = [ '%.3f' % elem for elem in norm_c ] #display value to 3 dp + norm_h_text.append(norm_c_text) + + fig = plt.figure() + mplhep.hist2dplot(H=norm_h,norm=mpl.colors.LogNorm(),labels=norm_h_text,xbins=Q2_bins,ybins=Q2_bins,cmax=1,cmin=1e-5) + plt.yscale('log') + plt.xscale('log') + fig.set_figwidth(11) + fig.set_figheight(11) + plt.xlabel('$Q^2$ [$GeV^2$] Truth') + plt.ylabel('$Q^2$ [$GeV^2$] {}'.format(method_dict['{}'.format(method)])) + plt.title('{} $Q^2$ correlation {}x{} $minQ^2=${}$GeV^2$'.format(method_dict['{}'.format(method)],k,p,minq2)) + plt.show() + plt.savefig(os.path.join(args.outdir, '%gon%g/Q2_correlation_%s_%gx%g_minQ2=%g.png' %(k,p,method,k,p,minq2))) + + + +#function to construct Bjorken-x correlation plots +def Xcorrelation(minq2,method): #minq2 can be 1,10,100, or 1000; method can be 'E','DA', or 'JB' + + Xvalues_Y = method_Xvalues_dict['{}'.format(method)] #x values of the given method, that are mapped onto the y axis + + X_List_T = Xvalues_T['{}'.format(minq2)] #Truth x values for given minq2, mapped along x axis + X_List_Y = Xvalues_Y['{}'.format(minq2)] #method (E/DA/JB) x values for given minq2, mapped along y axis + + T_len = ak.count(X_List_T,axis=0) #total number of events in Truth + Y_len = ak.count(X_List_Y,axis=0) #total number of events in method + + if T_len > Y_len: #if total number of events for Truth is greater + Y_boolean = ak.count(X_List_Y,axis=-1) >= 1 #boolean to filter ak.Arrays wrt single events in method + X_List_T_F = X_List_T[Y_boolean] #filtered Truth x values + X_List_Y_F = X_List_Y[Y_boolean] #filtered method x values + else: #if total number of events for method is greater + T_boolean = ak.count(X_List_T,axis=-1) >= 1 #boolean to filter ak.Arrays wrt single events in Truth + X_List_T_F = X_List_T[T_boolean] #filtered Truth x values + X_List_Y_F = X_List_Y[T_boolean] #filtered method x values + + T_Xs = np.array(ak.flatten(X_List_T_F)) #Truth Bjorken-x values, mapped along x axis + Y_Xs = np.array(ak.flatten(X_List_Y_F)) #method Bjorken-x values, mapped along y axis + + T_x_bool = T_Xs>=minq2/(4*k*p) #boolean to filter x values that satisfy bjorken-x equation for minq2, ebeam and pbeam + T_Xs = T_Xs[T_x_bool] + Y_Xs = Y_Xs[T_x_bool] + + #2-dimensional histogram, h + h, xedges, yedges = np.histogram2d(x=T_Xs,y=Y_Xs, bins=[x_bins,x_bins]) + + #normalization of h: + col_sum = ak.sum(h,axis=-1) #number of events in each (verticle) column + norm_h = [] #norm_h is the normalized matrix + norm_h_text = [] #display labels matrix + for i in range(len(col_sum)): + if col_sum[i] != 0: + norm_c = h[i]/col_sum[i] #normalized column = column values divide by sum of the column + else: + norm_c = h[i] + norm_h.append(norm_c) + norm_c_text = [ '%.2f' % elem for elem in norm_c ] #display value to 2 dp + norm_h_text.append(norm_c_text) + + fig = plt.figure() + mplhep.hist2dplot(H=norm_h,norm=mpl.colors.LogNorm(),labels=norm_h_text,xbins=x_bins,ybins=x_bins,cmax=1,cmin=1e-5) + plt.yscale('log') + plt.xscale('log') + fig.set_figwidth(11) + fig.set_figheight(11) + plt.xlabel('x Truth') + plt.ylabel('$x$ {}'.format(method_dict['{}'.format(method)])) + plt.title('{} $x$ correlation {}x{} $minQ^2=${}$GeV^2$'.format(method_dict['{}'.format(method)],k,p,minq2)) + plt.show() + plt.savefig(os.path.join(args.outdir, '%gon%g/x_correlation_%s_%gx%g_minQ2=%g.png' %(k,p,method,k,p,minq2))) + + + +keys = ur.concatenate(rec_file + ':events/' + 'InclusiveKinematicsTruth') +minq2_1_T = [keys['InclusiveKinematicsTruth.Q2'],keys['InclusiveKinematicsTruth.x']] +keys = ur.concatenate(rec_file + ':events/' + 'InclusiveKinematicsElectron') +minq2_1_E = [keys['InclusiveKinematicsElectron.Q2'], keys['InclusiveKinematicsElectron.x']] +keys = ur.concatenate(rec_file + ':events/' + 'InclusiveKinematicsDA') +minq2_1_DA = [keys['InclusiveKinematicsDA.Q2'], keys['InclusiveKinematicsDA.x']] +keys = ur.concatenate(rec_file + ':events/' + 'InclusiveKinematicsJB') +minq2_1_JB = [keys['InclusiveKinematicsJB.Q2'], keys['InclusiveKinematicsJB.x']] + +Q2values_T = {'1':minq2_1_T[0]} +Q2values_E = {'1':minq2_1_E[0]} +Q2values_DA = {'1':minq2_1_DA[0]} +Q2values_JB = {'1':minq2_1_JB[0]} +Xvalues_T = {'1':minq2_1_T[1]} +Xvalues_E = {'1':minq2_1_E[1]} +Xvalues_DA = {'1':minq2_1_DA[1]} +Xvalues_JB = {'1':minq2_1_JB[1]} + +method_dict = {'e':'Electron','DA':'Double-Angle','JB':'Jacquet-Blondel'} +method_Q2values_dict = {'e':Q2values_E,'DA':Q2values_DA,'JB':Q2values_JB} +method_Xvalues_dict = {'e':Xvalues_E,'DA':Xvalues_DA,'JB':Xvalues_JB} + +Q2correlation(minq2,'e') +Xcorrelation(minq2,'e') +Q2correlation(minq2,'DA') +Xcorrelation(minq2,'DA') +Q2correlation(minq2,'JB') +Xcorrelation(minq2,'JB') diff --git a/benchmarks/dis/config.yml b/benchmarks/dis/config.yml index 2277cb7ba60faa993d2c437a568ef1e3a204c8af..fede15bd6e3e718e0b48d4f3c3b0bfe85f273ed8 100644 --- a/benchmarks/dis/config.yml +++ b/benchmarks/dis/config.yml @@ -12,13 +12,16 @@ dis:generate: matrix: - EBEAM: 5 PBEAM: 41 + MINQ2: 1 - EBEAM: 10 PBEAM: 100 + MINQ2: 1 - EBEAM: 18 PBEAM: 275 + MINQ2: 1 timeout: 1 hours script: - - bash benchmarks/dis/get.sh --config dis_${EBEAM}x${PBEAM} --ebeam ${EBEAM} --pbeam ${PBEAM} + - bash benchmarks/dis/get.sh --config dis_${EBEAM}x${PBEAM}_minQ2=${MINQ2} --ebeam ${EBEAM} --pbeam ${PBEAM} --minq2 ${MINQ2} dis:simulate: stage: simulate @@ -28,13 +31,16 @@ dis:simulate: matrix: - EBEAM: 5 PBEAM: 41 + MINQ2: 1 - EBEAM: 10 PBEAM: 100 + MINQ2: 1 - EBEAM: 18 PBEAM: 275 + MINQ2: 1 timeout: 2 hour script: - - bash benchmarks/dis/dis.sh --config dis_${EBEAM}x${PBEAM} --ebeam ${EBEAM} --pbeam ${PBEAM} + - bash benchmarks/dis/dis.sh --config dis_${EBEAM}x${PBEAM}_minQ2=${MINQ2} --ebeam ${EBEAM} --pbeam ${PBEAM} --minq2 ${MINQ2} retry: max: 2 when: diff --git a/benchmarks/dis/dis.sh b/benchmarks/dis/dis.sh index 27c347f32b0f94b4f46a37647c39e4e82116aed3..2a2ae0a8fc455122b89238d04b6b5a22f624ec7b 100755 --- a/benchmarks/dis/dis.sh +++ b/benchmarks/dis/dis.sh @@ -23,6 +23,7 @@ echo "Running the DIS benchmarks" ## - CONFIG: The specific generator configuration ## - EBEAM: The electron beam energy ## - PBEAM: The ion beam energy +export REQUIRE_MINQ2=true source ${LOCAL_PREFIX}/bin/parse_cmd.sh $@ ## To run the reconstruction, we need the following global variables: @@ -110,6 +111,7 @@ cat << EOF > ${CONFIG} "output_prefix": "${RESULTS_PATH}/${PLOT_TAG}", "ebeam": ${EBEAM}, "pbeam": ${PBEAM}, + "minq2": ${MINQ2}, "test_tag": "${BEAM_TAG}" } EOF @@ -120,6 +122,12 @@ if [[ "$?" -ne "0" ]] ; then exit 1 fi +python benchmarks/dis/analysis/kinematics_correlations.py --rec_file ${REC_FILE} --ebeam ${EBEAM} --pbeam ${PBEAM} --minq2 ${MINQ2} +if [[ "$?" -ne "0" ]] ; then + echo "ERROR running kinematics_correlations script" + exit 1 +fi + CONFIG="${TMP_PATH}/${PLOT_TAG}.raw.json" cat << EOF > ${CONFIG} { @@ -128,6 +136,7 @@ cat << EOF > ${CONFIG} "output_prefix": "${RESULTS_PATH}/${PLOT_TAG}", "ebeam": ${EBEAM}, "pbeam": ${PBEAM}, + "minq2": ${MINQ2}, "test_tag": "${BEAM_TAG}" } EOF @@ -145,6 +154,7 @@ cat << EOF > ${CONFIG} "output_prefix": "${RESULTS_PATH}/${PLOT_TAG}", "ebeam": ${EBEAM}, "pbeam": ${PBEAM}, + "minq2": ${MINQ2}, "test_tag": "${BEAM_TAG}" } EOF @@ -162,6 +172,7 @@ cat << EOF > ${CONFIG} "output_prefix": "${RESULTS_PATH}/${PLOT_TAG}", "ebeam": ${EBEAM}, "pbeam": ${PBEAM}, + "minq2": ${MINQ2}, "test_tag": "${BEAM_TAG}" } EOF diff --git a/benchmarks/dis/get.sh b/benchmarks/dis/get.sh index bb4b477d93cdc0a6ecf3d5ac3aef08e9aa5242a1..aefa17a179f67e502730c720a14a65761da29d3c 100644 --- a/benchmarks/dis/get.sh +++ b/benchmarks/dis/get.sh @@ -21,6 +21,7 @@ pushd ${PROJECT_ROOT} ## - CONFIG: The specific generator configuration --> not currenlty used FIXME ## - EBEAM: The electron beam energy --> not currently used FIXME ## - PBEAM: The ion beam energy --> not currently used FIXME +export REQUIRE_MINQ2=true source parse_cmd.sh $@ ## To run the generator, we need the following global variables: @@ -56,7 +57,7 @@ fi ## ============================================================================= ## Step 3: Copy the file (about 180 lines per event in DIS NC files) nlines=$((180*${JUGGLER_N_EVENTS})) -DATA_URL=S3/eictest/ATHENA/EVGEN/DIS/NC/${EBEAM}x${PBEAM}/minQ2=1/pythia8NCDIS_${EBEAM}x${PBEAM}_minQ2=1_beamEffects_xAngle=-0.025_hiDiv_vtxfix_1.hepmc +DATA_URL=S3/eictest/ATHENA/EVGEN/DIS/NC/${EBEAM}x${PBEAM}/minQ2=${MINQ2}/pythia8NCDIS_${EBEAM}x${PBEAM}_minQ2=${MINQ2}_beamEffects_xAngle=-0.025_hiDiv_vtxfix_1.hepmc mc config host add S3 https://dtn01.sdcc.bnl.gov:9000 ${S3_ACCESS_KEY} ${S3_SECRET_KEY} mc head -n ${nlines} ${DATA_URL} | sanitize_hepmc3 > ${TMP_PATH}/${GEN_TAG}.hepmc if [[ "$?" -ne "0" ]] ; then @@ -67,7 +68,7 @@ fi ## ============================================================================= ## Step 4: Finally, move relevant output into the artifacts directory and clean up ## ============================================================================= -echo "Moving generator output into ${INPUT_PATH}" +echo "Moving generator output to ${INPUT_PATH}/${GEN_TAG}.hepmc" mv ${TMP_PATH}/${GEN_TAG}.hepmc ${INPUT_PATH}/${GEN_TAG}.hepmc ## this step only matters for local execution echo "Cleaning up"