From fee8b16aa55210e4b73ca4da81f69306362633c8 Mon Sep 17 00:00:00 2001
From: Dmitry Kalinkin <dmitry.kalinkin@gmail.com>
Date: Thu, 10 Oct 2024 22:04:13 -0400
Subject: [PATCH] zdc_sigma: use maxfev=10000 (#79)

---
 benchmarks/zdc_sigma/analysis/sigma_plots.py | 16 ++++++++--------
 1 file changed, 8 insertions(+), 8 deletions(-)

diff --git a/benchmarks/zdc_sigma/analysis/sigma_plots.py b/benchmarks/zdc_sigma/analysis/sigma_plots.py
index fc422ed6..7ded93da 100644
--- a/benchmarks/zdc_sigma/analysis/sigma_plots.py
+++ b/benchmarks/zdc_sigma/analysis/sigma_plots.py
@@ -236,7 +236,7 @@ slc=abs(bc)<0.6
 fnc=gauss
 p0=[100, 0, 0.5]
 coeff, var_matrix = curve_fit(fnc, bc[slc], y[slc], p0=p0,
-                                 sigma=np.sqrt(y[slc])+(y[slc]==0))
+                                 sigma=np.sqrt(y[slc])+(y[slc]==0), maxfev=10000)
 x=np.linspace(-1, 1)
 plt.plot(x, gauss(x, *coeff), color='tab:orange')
 plt.xlabel("$\\theta^{*\\rm recon}_{\\Sigma}-\\theta^{*\\rm truth}_{\\Sigma}$ [mrad]")
@@ -259,7 +259,7 @@ for p in momenta:
     #print(bc[slc],y[slc])
     sigma=np.sqrt(y[slc])+(y[slc]==0)
     try:
-        coeff, var_matrix = curve_fit(fnc, list(bc[slc]), list(y[slc]), p0=p0,sigma=list(sigma))
+        coeff, var_matrix = curve_fit(fnc, list(bc[slc]), list(y[slc]), p0=p0, sigma=list(sigma), maxfev=10000)
         sigmas.append(np.abs(coeff[2]))
         dsigmas.append(np.sqrt(var_matrix[2][2]))
         xvals.append(p)
@@ -307,7 +307,7 @@ slc=abs(bc)<5
 fnc=gauss
 p0=[100, 0, 1]
 coeff, var_matrix = curve_fit(fnc, bc[slc], y[slc], p0=p0,
-                                 sigma=np.sqrt(y[slc])+(y[slc]==0))
+                                 sigma=np.sqrt(y[slc])+(y[slc]==0), maxfev=10000)
 x=np.linspace(-5, 5)
 plt.plot(x, gauss(x, *coeff), color='tab:orange')
 plt.xlabel("$z^{*\\rm recon}_{\\rm vtx}-z^{*\\rm truth}_{\\rm vtx}$ [m]")
@@ -331,7 +331,7 @@ for p in momenta:
     #print(bc[slc],y[slc])
     sigma=np.sqrt(y[slc])+(y[slc]==0)
     try:
-        coeff, var_matrix = curve_fit(fnc, list(bc[slc]), list(y[slc]), p0=p0,sigma=list(sigma))
+        coeff, var_matrix = curve_fit(fnc, list(bc[slc]), list(y[slc]), p0=p0, sigma=list(sigma), maxfev=10000)
         sigmas.append(abs(coeff[2]))
         dsigmas.append(np.sqrt(var_matrix[2][2]))
         xvals.append(p)
@@ -373,7 +373,7 @@ slc=abs(bc-lambda_mass)<0.05
 fnc=gauss
 p0=[100, lambda_mass, 0.03]
 coeff, var_matrix = curve_fit(fnc, bc[slc], y[slc], p0=p0,
-                                 sigma=np.sqrt(y[slc])+(y[slc]==0))
+                                 sigma=np.sqrt(y[slc])+(y[slc]==0), maxfev=10000)
 x=np.linspace(0.8, 1.3, 200)
 plt.plot(x, gauss(x, *coeff), color='tab:orange')
 print(coeff[2], np.sqrt(var_matrix[2][2]))
@@ -396,7 +396,7 @@ for p in momenta:
     p0=[100, lambda_mass, 0.03]
     try:
         coeff, var_matrix = curve_fit(fnc, list(bc[slc]), list(y[slc]), p0=p0,
-                                       sigma=list(np.sqrt(y[slc])+(y[slc]==0)))
+                                       sigma=list(np.sqrt(y[slc])+(y[slc]==0)), maxfev=10000)
         x=np.linspace(0.8, 1.3, 200)
         sigmas.append(coeff[2])
         dsigmas.append(np.sqrt(var_matrix[2][2]))
@@ -437,7 +437,7 @@ slc=abs(bc-sigma_mass)<0.02
 fnc=gauss
 p0=[100, sigma_mass, 0.03]
 coeff, var_matrix = curve_fit(fnc, bc[slc], y[slc], p0=p0,
-                                 sigma=np.sqrt(y[slc])+(y[slc]==0))
+                                 sigma=np.sqrt(y[slc])+(y[slc]==0), maxfev=10000)
 x=np.linspace(0.8, 1.3, 200)
 plt.plot(x, gauss(x, *coeff), color='tab:orange')
 print(coeff[2], np.sqrt(var_matrix[2][2]))
@@ -460,7 +460,7 @@ for p in momenta:
     p0=[100, sigma_mass, 0.03]
     try:
         coeff, var_matrix = curve_fit(fnc, list(bc[slc]), list(y[slc]), p0=p0,
-                                       sigma=list(np.sqrt(y[slc])+(y[slc]==0)))
+                                       sigma=list(np.sqrt(y[slc])+(y[slc]==0)), maxfev=10000)
         sigmas.append(abs(coeff[2]))
         dsigmas.append(np.sqrt(var_matrix[2][2]))
         xvals.append(p)
-- 
GitLab