diff --git a/benchmarks/zdc_sigma/analysis/sigma_plots.py b/benchmarks/zdc_sigma/analysis/sigma_plots.py index fc422ed6edc75261c2d55f30a41c7efa241580d8..7ded93dae39c069fa9974d531e756f4883dc5f61 100644 --- a/benchmarks/zdc_sigma/analysis/sigma_plots.py +++ b/benchmarks/zdc_sigma/analysis/sigma_plots.py @@ -236,7 +236,7 @@ slc=abs(bc)<0.6 fnc=gauss p0=[100, 0, 0.5] coeff, var_matrix = curve_fit(fnc, bc[slc], y[slc], p0=p0, - sigma=np.sqrt(y[slc])+(y[slc]==0)) + sigma=np.sqrt(y[slc])+(y[slc]==0), maxfev=10000) x=np.linspace(-1, 1) plt.plot(x, gauss(x, *coeff), color='tab:orange') plt.xlabel("$\\theta^{*\\rm recon}_{\\Sigma}-\\theta^{*\\rm truth}_{\\Sigma}$ [mrad]") @@ -259,7 +259,7 @@ for p in momenta: #print(bc[slc],y[slc]) sigma=np.sqrt(y[slc])+(y[slc]==0) try: - coeff, var_matrix = curve_fit(fnc, list(bc[slc]), list(y[slc]), p0=p0,sigma=list(sigma)) + coeff, var_matrix = curve_fit(fnc, list(bc[slc]), list(y[slc]), p0=p0, sigma=list(sigma), maxfev=10000) sigmas.append(np.abs(coeff[2])) dsigmas.append(np.sqrt(var_matrix[2][2])) xvals.append(p) @@ -307,7 +307,7 @@ slc=abs(bc)<5 fnc=gauss p0=[100, 0, 1] coeff, var_matrix = curve_fit(fnc, bc[slc], y[slc], p0=p0, - sigma=np.sqrt(y[slc])+(y[slc]==0)) + sigma=np.sqrt(y[slc])+(y[slc]==0), maxfev=10000) x=np.linspace(-5, 5) plt.plot(x, gauss(x, *coeff), color='tab:orange') plt.xlabel("$z^{*\\rm recon}_{\\rm vtx}-z^{*\\rm truth}_{\\rm vtx}$ [m]") @@ -331,7 +331,7 @@ for p in momenta: #print(bc[slc],y[slc]) sigma=np.sqrt(y[slc])+(y[slc]==0) try: - coeff, var_matrix = curve_fit(fnc, list(bc[slc]), list(y[slc]), p0=p0,sigma=list(sigma)) + coeff, var_matrix = curve_fit(fnc, list(bc[slc]), list(y[slc]), p0=p0, sigma=list(sigma), maxfev=10000) sigmas.append(abs(coeff[2])) dsigmas.append(np.sqrt(var_matrix[2][2])) xvals.append(p) @@ -373,7 +373,7 @@ slc=abs(bc-lambda_mass)<0.05 fnc=gauss p0=[100, lambda_mass, 0.03] coeff, var_matrix = curve_fit(fnc, bc[slc], y[slc], p0=p0, - sigma=np.sqrt(y[slc])+(y[slc]==0)) + sigma=np.sqrt(y[slc])+(y[slc]==0), maxfev=10000) x=np.linspace(0.8, 1.3, 200) plt.plot(x, gauss(x, *coeff), color='tab:orange') print(coeff[2], np.sqrt(var_matrix[2][2])) @@ -396,7 +396,7 @@ for p in momenta: p0=[100, lambda_mass, 0.03] try: coeff, var_matrix = curve_fit(fnc, list(bc[slc]), list(y[slc]), p0=p0, - sigma=list(np.sqrt(y[slc])+(y[slc]==0))) + sigma=list(np.sqrt(y[slc])+(y[slc]==0)), maxfev=10000) x=np.linspace(0.8, 1.3, 200) sigmas.append(coeff[2]) dsigmas.append(np.sqrt(var_matrix[2][2])) @@ -437,7 +437,7 @@ slc=abs(bc-sigma_mass)<0.02 fnc=gauss p0=[100, sigma_mass, 0.03] coeff, var_matrix = curve_fit(fnc, bc[slc], y[slc], p0=p0, - sigma=np.sqrt(y[slc])+(y[slc]==0)) + sigma=np.sqrt(y[slc])+(y[slc]==0), maxfev=10000) x=np.linspace(0.8, 1.3, 200) plt.plot(x, gauss(x, *coeff), color='tab:orange') print(coeff[2], np.sqrt(var_matrix[2][2])) @@ -460,7 +460,7 @@ for p in momenta: p0=[100, sigma_mass, 0.03] try: coeff, var_matrix = curve_fit(fnc, list(bc[slc]), list(y[slc]), p0=p0, - sigma=list(np.sqrt(y[slc])+(y[slc]==0))) + sigma=list(np.sqrt(y[slc])+(y[slc]==0)), maxfev=10000) sigmas.append(abs(coeff[2])) dsigmas.append(np.sqrt(var_matrix[2][2])) xvals.append(p)